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ABSTRACT
A recommender system aims to recommend items that a user is

interested in among many items. The need for the recommender

system has been expanded by the information explosion. Various

approaches have been suggested for providing meaningful recom-

mendations to users. One of the proposed approaches is to consider

a recommender system as aMarkov decision process (MDP) problem

and try to solve it using reinforcement learning (RL). However,

existing RL-based methods have an obvious drawback. To solve an

MDP in a recommender system, they encountered a problem with

the large number of discrete actions that bring RL to a larger class of

problems. In this paper, we propose a novel RL-based recommender

system. We formulate a recommender system as a gridworld game

by using a biclustering technique that can reduce the state and ac-

tion space significantly. Using biclustering not only reduces space

but also improves the recommendation quality effectively handling

the cold-start problem. In addition, our approach can provide users

with some explanation why the system recommends certain items.

Lastly, we examine the proposed algorithm on a real-world dataset

and achieve a better performance than the widely used recommen-

dation algorithm.
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1 INTRODUCTION
As the choice of users increases, the importance of recommender

systems that assist in decision making is increasing day by day.

Recommender systems are introduced in a variety of domains, and

the performance of recommender systems is directly related to the

interests of the company or individual. Previously, recommender

systems have achieved great success with a method called collabo-

rative filtering (CF). CF is one of the most popular techniques in

the recommender system domain. The objective of CF is to make

a personalized prediction about the preferences of users using the

information about other users who have similar interests for items.

One disadvantage of CF is that it considers only one of the two

dimensions (i.e., users or items), which often makes it difficult to

detect important patterns that otherwise could be captured by con-

sidering both dimensions. In addition, the data matrix a typical

recommender system has to handle is sparse and high-dimensional,

because there are a large number of available items, many of which

are never purchased or rated by the users. These two facts led

to the developments of biclustering-based recommender systems,

some of which have shown superior performance to conventional

CF approaches [1, 5, 9, 16, 19]. Biclustering, also known as co-

clustering [4, 18], two-way clustering [6], and simultaneous clus-

tering [8], aims to find subsets of rows and columns of a given data

matrix [3]. The big difference between clustering and bicluster-

ing is that clustering derives a global model, whereas biclustering

produces a local model [7, 10].

Another disadvantage of CF is that it is static, therefore it is

usually not possible to reflect a user’s response in real time. There-

fore, an MDP-based recommender system is proposed [14]. They

use a discrete state MDP model to maximize the utility function

that takes into account the future interactions with their users. In

their work, they suggest the use of an n-gram predictive model for

generating the initial MDP. They consider the actions of the MDP

as a recommendation for an item. This leads to a large action space

which makes it difficult to solve the MDP problem.

In this paper, we propose a new recommendation algorithm

using biclustering and RL. We reduce state and action space by

using a biclustering technique which renders the MDP problem

https://doi.org/10.475/123_4
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easy to solve. Using biclustering not only reduces space but also

improves the recommendation quality of the cold start problem.

Moreover, it can be explained to users why the system recommends

certain items.

The paper is structured as follows. In Section 2 we review the

necessary background on MDP and RL. In Section 3 we define the

problem. In Section 4 we describe the proposed approach. Section 5

provide an empirical evaluation of the actual recommender sys-

tem based on the two Movielens datasets. We discuss the paper in

Section 6 then we conclude the paper in Section 7.

2 PRELIMINARY
Markov Decision Processes : An MDP is a model for sequential

stochastic decision problems [15]. An MDP model is specified by

a tuple of states, actions, a reward function, a transition function,

and a discount factor. The agent stays in a particular state st ∈ S
for each discrete time step t ∈ {0, 1, 2, ...}. After the choice of an
action at ∈ A, the agent moves to the next state st+1 by calling a

transition function T(st ,at ). At the same time the agent receives a

reward rt from the environment by reward function R(st ,at , st+1).
Based on a policy π (s), the action a is selected in a certain state s .
MDP can be solved by RL. RL aims to find the optimal policy π∗

that maximizes the exptected cumulative rewardG which is called

return. In RL, the optimal policy can be learned by a state-action

value function Qπ (s,a) which means the expected value of the

returnG obtained from episodes starting from a certain state s with
the action a. Qπ (s,a) can be expressed as follows:

Qπ (s,a) = Eπ {Gt |st = s,at = a} (1)

= Eπ

{
∞∑
k=0

γkrt+k |st = s,at = a

}
(2)

where γ is a discount factor (0 < γ ≤ 1).

3 PROBLEM DEFINITION
We consider a recommender system as an MDP problem that can

be formalized in a gridworld. Figure 1 describes the overview of

the formalization. A gridworld is a 2D environment in which an

agent can move in four directons at a time. Typically, the goal in a

gridworld is that the agent navigates to some location by maximiz-

ing the return. In our case, the agent and the state are considered

as a user and a group of items, respectively. User movement in the

gridworld means getting new recommendations from the group of

items. Moreover, the reward can be considered as a user’s satisfac-

tion for the recommended items. At first, we need to be specify the

environment of the MDP. In this paper, we assume that we have

obtained n2 biclusters from the user and item matrix B = (U , I ). We

describe the environment in more detail below:

State Space S : Gridworld has n × n = n2 distinct states. Each
state s = (U , I ) includes a user set U and an item set I which are

obtained from biclustering. The start state can be any state. Outside

of the gridworld cannot be moved to.

Action Space A : The agent can choose from up to four actions

to move around: up, down, left, right.

Transition Function T(st ,at ) : Gridworld is deterministic.
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Figure 1: Overview of the proposed method

Reward Function R(st ,at , st+1) : A reward rt is also determin-

istic and is determined by the proposed reward function as follows:

R(st ,at , st+1) = Jaccard_Distance(Ust ,Ust+1 ) (3)

=
|Ust ∩Ust+1 |

|Ust ∪Ust+1 |
. (4)

The agent receives between 0 to 1 reward through the calculation of

the Jaccard distance with the user vectors of two states st , st+1. In
this environment, reward is deterministic function of state-action

pair. As the two states havemore same users, the reward approaches

to 1. The similarity of the two item vectors of the states is not

considered as a reward, because we do not want to recommend

only a small number of items when moving the state.

4 PROPOSED APPROACH
The proposed method is composed of four parts: constructing the

states, learning the Q-Function, generating recommendations, and

updating the model online.

4.1 Constructing the States
In the next step, each state is mapped to one of n2 biclusters, so
that each state has an item set and a user set. The mapping is

performed based on the distance between the user vector of the

bicluster and the states of the gridworld that can be considered as

a two-dimensional (2D) euclidean space. However, the user vector

of the bicluster is not 2D so it is converted to a 2D space using a

dimensionality reduction technique. Now our goal is tomap the user

vectors to the 2D gridworld by minimizing the total distance. It is

an NP-hard problem, hence we propose simple greedy algorithm. It

is almost same as the traveling salesman problem. After calculating

similarities between n2 user vectors and gridworld, the user vectors
are mapped to the nearest gridworld point one by one.

4.2 Learning the Q-Function
In this gridworld environment, the agent is looping over all states

and evaluating the Q function for each of the four possible actions.
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Algorithm 1: Generating Recommendations

input : state-space S , action-space A, policy π , transition
function T , # candidate start states k , a user

output : recommended the list of items

1 select top-k states {s1, .., sk } with high similarity to a user;

2 for i ← 1 to k do
3 s ← si ;

4 while at least one items to recommend do
5 recommend items based on s;

6 a ← ϵ-greedy with π (s);

7 execute action a;

8 s ′ ← T (s,a);

9 s ← s ′;

Q-learning [17] and SARSA [13] are frequently used for this prob-

lem. We tested both algorithms in this study. Moreover, any state

in our environment can be the start state. Then, the policy is up-

dated to select the actions that maximize the Q value at each state.

Moreover, we use the ϵ-greedy method for balancing exploration

and exploitation [15]. The policy is described as follows:

π (s) =

{
random action fromA if ξ < ϵ
argmaxa∈A Q(s,a) otherwise

(5)

Then, an optimal policy can be found by the Bellman equation.

Executing these updates repeatedly is guaranteed to converge to the

optimal policy [15]. In other words, this corresponds to actions that

guide the user to obtain good recommendations, while maximizing

rewards.

4.3 Generating Recommendations
Algorithm 1 describes a procedure for generating recommendations

for a user. Unlike the other tabula methods, all the states in this

environment can be the starting state. To set the starting state, the

jaccard distance between all states and the user is calculated. The

state with the highest similarity to the user becomes the starting

state. Then, the algorithm attempts to recommend the item with

the ϵ-greedy based policy until there are no more recommended

items.

4.4 Updating the Model Online
One of the major advantages of the proposed model is that the

user feedback is reflected the states online. This makes the value of

the reward function different. As the value of the reward function

changes, the optimal policy may change. For example, when a

user who has recommended an itemset in state st is satisfied with

the items, the system immediately adds that user to the userset

Ust of the corresponding state st . If the user are satisfied with

the item recommended in the next state st+1, the size of Ust+1
is also increased by 1. As a result, R(st ,at , st+1) increases from
|Ust ∩Ust+1 | / |Ust ∪Ust+1 | to |Ust ∩Ust+1 | + 1 / |Ust ∪Ust+1 | + 1.
Using the algorithm proposed in this paper, it is possible to update

the state space in real time, and since the reward value changes

according to the updated state space, the recommendation can be

changed according to the current trend of the users.
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Figure 2: Learning curve on Movielens dataset

5 EXPERIMENTS
5.1 Dataset
OpenAI Gym [2] is used to experiment the proposed algorithm.

Gym has a collection of environments so that the proposed rein-

forcement learning can be easily implemented. In addition, two

Movielens datasets are used for evaluating our algorithm. One is a

dataset of 943 users and 1682 items including 100,000 ratings. The

other one has 1,000,209 ratings with 6,040 users and 3,900 items.

Both data sets represent the preferences of users as ratings from 1

to 5. Two Movielens datasets were binarized applying a threshold

of three rating points, as done in many studies. 80% of the dataset

was used as the training set and the remaining was used to test the

algorithm. To evaluate the algorithms in the cold start conditions,

each test user rating was deleted leaving only 10%.

5.2 States Setup
To obtain the biclusters from the matrix, we use two well-known

biclustering algorithms: Bimax [11], Bibit [12]. These two bicluster-

ing algorithms have the minimum number of rows and columns

of the biclusters as input parameter. We vary the parameter values

and obtain biclusters of various shapes and sizes. Subsequently, we

randomly select a total of n2 biclusters to map to the gridworld.

Finally, the state space in the gridworld is completed using the

proposed greedy algorithm. In our experiment, n is 20 and 30 on

the two Movielens datasets so that the total number of states is 400

and 900, respectively.

5.3 Q-Learning versus SARSA
Q-learning and SARSA are used to find the optimal policy π . Q-
learning is an off-policy based method while SARSA is an on-policy

based method. In this paper, we used both methods and evaluated

which performed better in our environment. Figure 2 demonstrates

the learning curve on the two Movielens datasets. The average

return is measured by the number of episodes. The performance of

the two algorithms are almost identical in the experiment.

5.4 Performance on the Cold-Start Problem
In this paper, we use ranking metrics to evaluate proposed algo-

rithm. The two most popular ranking metrics are precision and

recall. Given a top-N recommendation list IN , precision and recall

are defined as follows:
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Table 1: P@30 and R@30 Comparison

Movielens_100k Movielens_1M
P@30 R@30 P@30 R@30

Global-average 0.153 0.102 0.161 0.094

User-based 0.187 0.129 0.212 0.119

Item-based 0.193 0.132 0.220 0.124

Proposed 0.246 0.169 0.277 0.155

P@N =
|IN ∩ ID |

N
R@N =

|IN ∩ ID |

|ID |
(6)

where ID is the items that algorithm should predict. The precision

and recall are calculated by averaging the precision and recall over

all the users.

We evaluate the standard algorithms based on which of the items

are actually hidden by the user in the test data. Table 1 shows the

results for P@30 and R@30 on the two Movielens datasets. The

general observation is that the proposed algorithm outperforms

the other recommendation methods under the cold-start condition.

5.5 Explainable Recommendation
When recommending an item group with this proposed algorithm,

the reason for the recommendation can be explained to users by

informing the corresponding state s together e.g. group of items Is
or group of usersUs . Providing a reason for a recommendation to a

user in a real system can increase the recommendation reliability. In

a model-based based recommender system, the recommendations

are not explainable. In addition, existing bicluster based recommen-

dation systems are not usually suitable for providing explanations

because the bicluster size is usually very large.

6 DISCUSSION
In this paper, we assume that n2 good quality of biclusters are given.
However, biclustering is heuristically found in most cases, due to

the fact that it is an NP-hard problem. Therefore, the performance

related to providing a recommendation depends largely on the

biclusters. We leave finding an optimal bicluster as a part of future

research. Moreover, we have reduced the action space to four, top,

bottom, right and left, but this action space can move in 8 directions

or more directions in a multi-dimensional space instead of 2D space.

It can be easily extended. Of course, the larger the action space, the

greater the computational complexity and the better the accuracy

of the recommendation. The method of mapping the bicluster to

the state space is crucial for the quality of the recommendation. In

addition, we are unable to test with various evaluation methods

such as coverage, novelty, etc., but it is expected that the value of

coverage and novelty will be acceptable based on ϵ value.

7 CONCLUSION
We have proposed a novel algorithm using RL and biclustering

to mitigate the cold-start, online-learning, and explainable recom-

mendation problems. We formulate a recommender system as a

gridworld game by using a biclustering technique that reduces the

state and action space significantly. Using biclustering not only

reduce the space but also improves the recommendation quality

of the cold start problem. Moreover, the system can explain to

users why the system recommends certain items. We examine the

proposed algorithm on the real world dataset and achieved better

performance than standard recommender technique. We expect

that this algorithm will be useful for recommending items in actual

commercial applications.
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