
Rapid and Robust Denoising of Pyrosequenced Amplicons for Metagenomics

Byunghan Lee†, Joonhong Park�, and Sungroh Yoon†∗
†Electrical Engineering and Computer Science, Seoul National University, Seoul 151-744, Korea

�Civil and Environmental Engineering, Yonsei University, Seoul 120-749, Korea
∗Correspondence: sryoon@snu.ac.kr

Abstract—Metagenomic sequencing has become a crucial
tool for obtaining a gene catalogue of operational taxonomic
units (OTUs) in a microbial community. High-throughput
pyrosequencing is a next-generation sequencing technique very
popular in microbial community analysis due to its longer
read length compared to alternative methods. Computational
tools are inevitable to process raw data from pyrosequencers,
and in particular, noise removal is a critical data-mining step
to obtain robust sequence reads. However, the slow rate of
existing denoisers has bottlenecked the whole pyrosequencing
process, let alone hindering efforts to improve robustness. To
address these, we propose a new approach that can accelerate
the denoising process substantially. By using our approach, it
now takes only about 2 hours to denoise 62,873 pyrosequenced
amplicons from a mixture of 91 full-length 16S rRNA clones.
It would otherwise take nearly 2.5 days if existing software
tools were used. Furthermore, our approach can effectively
reduce overestimating the number of OTUs, producing 6.7
times fewer species-level OTUs on average than a state-of-the-
art alternative under the same condition. Leveraged by our
approach, we hope that metagenomic sequencing will become
an even more appealing tool for microbial community analysis.

Keywords-pyrosequencing; amplicons; cluster analysis; GPU;
biomedical informatics; metagenomics

I. INTRODUCTION

Metagenomics refers to analyzing the functions and se-

quences of the collective microbial genomes contained in

an environmental sample [1]. In our body, the microbes

collectively make up to 100 trillion cells, tenfold the number

of human cells, and mostly reside in the intestine [2].

Since there exists substantial diversity of the gut micro-

biome between individuals [3], understanding the diversity

by metagenomics may lead to breakthroughs in personalized

medicine and related industry [4]. Metagenomic studies

typically produce a huge amount of sequence data (e.g.,
[2] generated 576.7 gigabases in total) due to the microbial

diversity. Without data mining, it would be nearly impossible

to analyze such large-scale data.

A new generation of high-throughput, low-cost sequenc-

ing technologies, referred to as next-generation sequencing
(NGS) [5], is playing a key role in establishing a genomic

catalog of microbiomes. In particular, pyrosequencing [6]

as implemented by Roche’s 454 has been revolutionary in

microbial community analysis ranging from continents to

within an individual’s body [7]. Compared to the automated

Sanger sequencing, NGS methods produce much shorter

reads, posing new computational challenges for genome

assembly and annotation [8]. The role of computational

methods for robust and efficient processing of NGS data

has been crucial in metagenomic sequencing [9].

In many applications, a homologous DNA region such as

well-conserved 16S rRNA genes from diverse microbiomes

is first amplified by polymerase chain reaction (PCR) before

sequenced. Pyrosequencing has allowed much larger read

numbers from PCR amplicons than ever before [10]. Even

so, pyrosequenced reads are never free from error, and

a robust data-mining method is required to remove such

error. Otherwise, the noise introduced during PCR and

pyrosequencing may lead to overestimating the number of

operational taxonomic units (OTUs) by orders of magni-

tude [11]. Although there exist denoising methods [7], [10],

[12]–[14], their time demand is high, typically taking days

to process only part of the amplicons collected. This slow

rate clearly has bottlenecked the whole analysis pipeline, let

alone hindering efforts to improve robustness.

To address this computational challenge, we propose a

denoising scheme that progressively eliminates errors in-

duced during pyrosequencing. The proposed method exploits

data-level parallelism underlying the noise-removal process

and accelerates the most time-consuming steps by running

them on graphic processing units (GPUs). According to

our experiment with 62,873 amplicons generated by pyrose-

quencing a mixture of 91 full-length 16S rRNA clones, our

approach gave about 26 times speed-up over 8-core runs

of AmpliconNoise [10], a widely used amplicon denoiser,

reducing the analysis time from nearly 2.5 days to some 2

hours. As for accuracy, our approach significantly reduced

overestimating the number of OTUs, producing 6.7 times

fewer species-level OTUs on average than AmpliconNoise

under the same experimental condition.

II. BACKGROUND

A. Flowgrams Bear Sequence Information

Given a DNA fragment, pyrosequencing returns its nu-

cleotide sequence as a series of light intensity values.

This series is called the flowgram of the fragment. Let

F = (f1, f2, . . . , fm) denote a flowgram consisting of m
intensity values, where fi ∈ R+. A flowgram is arranged in

such a way that every first, second, third and fourth intensity

2012 IEEE 12th International Conference on Data Mining

1550-4786/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDM.2012.68

374

2012 IEEE 12th International Conference on Data Mining

1550-4786/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDM.2012.68

954

Position

In
ten

sit
y

Light intensity signals from pyrosequencer

T C A G T C A G

Quantized data

Base-called
Sequence

T C A G T C A G

0.00 1.00 0.00 0.00 2.00 0.00 0.00 1.00

Raw data
0.03 1.03 0.09 0.12 1.89 0.09 0.09 1.01

Nucleotide position

In
te

ns
ity

CTTG
(a)

Clustering

Membership
Information

E
step

M
step

Parameter
Estimates

Post-processing

Calculate
Distance

Distance
Information

OTUs : Data

: Process

Build
Model

OTU
Models

INPUT

OUTPUT

(1)

(2)

(4) (3)

(5)

(6)

Base-called
Sequences

Phase 1

Phase 2

Flowgrams

To start Phase 2

(b)

Figure 1. (a) Flowgrams and base-calling procedure. (b) Overview of removing noise in pyrosequenced amplicons.

values bear information on T, C, A, and G, respectively
(Fig. 1(a)). The process of translating a flowgram into the

corresponding nucleotide sequence is referred to as base
calling. A simple base-calling method is to let �fi + 0.5�
indicate the number of nucleotides represented by fi; 1.0
means a single nucleotide and a larger value a homopolymer

(e.g., 2.0 for AA and 3.0 for TTT). The read of a fragment
means its sequence resulting from base calling.

Given two flowgrams F = (f1, f2, . . . , fm) and G =
(g1, g2, . . . , gm), their distance is defined by

d(F,G) =
1

m

m∑
i=1

δ(fi, gi) (1)

where δ is an empirically determined bivariate function

representing the distance between two intensity values [10].

The probability that F and G originate from the same

sequence decreases exponentially as their distance increases.

We denote this probability by P (F = G), which is defined
over [0,+∞] as follows [14]:

P (F = G) =
1

σ
exp

[
−d(F,G)

σ

]
(2)

where σ is a user-specified parameter.

B. Noise Sources in Pyrosequenced Amplicons

Three major sources of noise exist [10]: base-calling error

during pyrosequencing, PCR single nucleotide substitutions

and PCR chimeric sequences. This paper focuses on remov-

ing the first two types. They are more general than the last,

which requires knowledge specific to the given data set and

is difficult to generalize. A confusion may arise when calling

bases in a homopolymer, because observed light intensities

do not perfectly match the homopolymer lengths. The base-
calling error refers to determining the length of a homopoly-
mer incorrectly. As stated in Section I, a DNA region of

interest is normally amplified by PCR before sequenced.

During PCR, it is possible that a nucleotide is erroneously

replaced by another type (e.g., base G becomes C). We call
this type of noise PCR single nucleotide substitutions.

Table I
COMPARISON OF RELATED NOISE-REMOVAL METHODS

Method Sequence of steps† Target noise‡ Ref.

CRiSPy-CUDA 1, 2, 5, 6 P [12]
CUDA-EC 1, 2, 5, 6 P [13]

PyroNoise pc§, 1, 2, (3, 4)∗, 5, 6 B [14]

AmpliconNoise pc§, (1, 2, (3, 4)∗, 5)2, 6 B, P [10]
Reeder and Knight Greedy algorithm P [7]

† As labeled in Fig. 1(b); §: preclustering; (·)2: repeat twice; (·)∗:
repeat until convergence.

‡ B: base-calling error; P : PCR single nucleotide substitutions.

C. Related Work

Table I lists existing denoisers, their procedures and target

noise types. Most of these methods have many internal

procedures in common, as annotated in the table. Existing

tools can handle either the base-calling error or the PCR

single nucleotide substitutions, except for AmpliconNoise.

It can handle both error types by repeating the main error-

correction loop as our approach. However, AmpliconNoise

requires a preclustering step, which divides input data into

nonoverlapping partitions. Each partition is processed sep-

arately, thus making it impossible to find global patterns

appearing in multiple partitions. The proposed method can

handle both types of pyrosequencing errors, and does not

require the preclustering step. Leveraged by the use of GPU-

based acceleration techniques, our approach also outper-

forms AmpliconNoise by large margin in terms of running

time. Furthermore, the proposed method can estimate the

number of OTUs more accurately under the same condition.

III. METHODS

A. Overview

Fig. 1(b) depicts the overview of removing base-calling

error and PCR single nucleotide substitutions. The input

consists of the flowgrams of pyrosequenced amplicons

and their base-called sequences, and the output is a set

of OTUs (in other words, organisms) represented by the

pyrosequenced amplicons. The whole denoising pipeline

375955

CPU

GPU
Global Memory Shared Memory

Read 1 Read 2

A C … A

G T … G

T G … T

⁞ ⁞ ⁞

T

C

⁞

8 scores
In every 8th

row

Backtracking
matrix

8 nucleotides

8 scores
in a column
(for thread t)

8 scores
In a column

(for thread t+1)

1 Read

n reads

…

Pairwise Distance Matrix

1 2 … … n
1
2
⁞

⁞

n
n

1 2

Thread
Block

Grid

A G T …

A

G

T

⁞ ⁞

T

C T G …

A

G

T

⁞ ⁞

T

Read 1 Read 2

R
ea

d
N

R
ea

d
N

…

C T G …
A …

G …

T …

⁞ ⁞ ⁞ ⁞

T …

C

⁞

→

↓

↓

→

→

0100

0001

0010

0010

0001

0100

0100

0001

32bits

The 1st of each read The last of each read

Thread t Thread t+1

Score Matrix Backtracking Matrix

Read #

R
ea

d

n-1 88

88

n-1

Window ()

For every
8 rows

The circled
numbers
indicate the
order of
computation.

Backtracking
Matrix for
thread t is not
shown due to
limited space.

A GPU grid is a
set of thread
blocks, each of
which consists of
multiple threads.

In reality, we do not
store the pairwise
distance matrix in its
entirety due to the
space complexity. Here
it is shown for the sake
of explanation.

Figure 2. Overview of the proposed GPU-based scheme for parallelizing the denoise process for high-throughput pyrosequenced amplicons.

consists of six steps as labeled in the diagram. As suggested

in the literature [10], [14], we handle the two types of

pyrosequencing error separately in two phases: In phase 1,

we remove the base-calling error based on flowgrams in

steps 1–5. In phase 2, we revisit these steps to eliminate

the PCR substitution error based on base-called sequences.

The first step of phase 1 is to calculate the pairwise

distance between flowgrams. Based on the resulting distance

information, we perform clustering of flowgrams in step 2.

This is to estimate the number of OTUs in the input data

under the assumption that each cluster corresponds to an

OTU. We can then regard the flowgrams in a cluster as the

instances of the corresponding OTU. In steps 3 and 4, we

find the best representative flowgram for each cluster by

the expectation-maximization algorithm [15]. It allows us

to estimate the membership of every flowgram in such a

way that the likelihood of observing all the flowgrams in

the input data is maximized. In step 5, we declare each of

these representative flowgrams as the model for an OTU,

and feed their base-called sequences to step 1, starting the

second phase. In step 1 of the second phase, we calculate

pairwise distance between based-called sequences. This step

tends to be time-consuming, and we accelerate it by GPU-

based parallelization. The rest of the second phase proceeds

similarly to the first. In step 6, we finalize the denoising

process by assigning each denoised sequence to one of the

OTU models according to its similarity to a model.

For n reads of length L, the worst-case time complexity
of the sequential algorithm is O(L2n2), which can be

significantly reduced by parallelization.

B. GPU-Based Computation of Distance between Sequences
We define the distance between two sequences based on

their alignment returned by the Needleman-Wunsch algo-

rithm [16]. It has quadratic worst-case time complexity, and

the pairwise distance computation usually takes significant

time for large data (Fig. 4(a)).
Assume that there are n reads in total, each of which

has length L. Each of the
(
n
2

)
computations is independent,

and GPU is a good fit for handling this type of parallelism.

GPU has a large number of cores with different types of

memory arranged in hierarchy. To unleash the full potential

of GPU, we should (1) maximize the utilization of cores and

(2) exploit the memory hierarchy wisely also minimizing

host-device memory transfer needs [17].
The basic idea is to let GPU threads simultaneously

calculate pairwise distance in parallel, but there are many

considerations to take for fully exploiting GPU. Two major

issues are as follows. First, GPU has fewer threads than(
n
2

)
unless n is very small. We need a divide-and-conquer

approach. Second, the Needleman-Wunsch algorithm com-

putes distance between two reads by dynamic programming,

which progressively completes two L×L matrices, one for

scoring and the other for backtracking. A naı̈ve implementa-

tion would then require O(2L2n2) space, which typical GPU
memory cannot store even for modest values of n and L.
We need a scheme for efficient utilization of GPU memory.
Fig. 2 shows the overview of our GPU-based paralleliza-

tion. The distance matrix splits into multiple submatrices

376956

(m × m ‘windows’), and one GPU grid (a set of thread

blocks) computes all the entries within one window simulta-

neously, by assigning one thread to computing one distance.

More details are as follows:

• A GPU thread progressively fills up the two matrices

by considering 8 rows as a unit of computation. Given an

L×L matrix, the first 8×L submatrix is computed followed
by the second, and so on.

• Each 8×L submatrix is filled up columnwise. That is,

the first column of the submatrix is computed, followed by

the second column, and so forth.

• The scores in the above 8 × 1 submatrix are stored in
shared memory and are used for the next column.

• When the thread has completed each 8× L submatrix,

its last row is stored in global memory so that the thread

can utilize it for the next 8× L submatrix.

• The sequence of 8 nucleotides matching the rows of
each 8× L submatrix is stored in shared memory.

• Each backtracking direction is encoded into 4 bits

(‘Backtracking Matrix’ in Fig. 2), and 8 direction values are

collectively stored in a 32-bit variable in global memory.

• For coalesced global memory access, the k-th nu-

cleotides of all reads are stored followed by the (k + 1)-th
nucleotides, and so on (see the inlet labeled CPU in Fig. 2).

The GPU memory utilization explained above was in-

spired by prior work on the GPU-based parallelization of

dynamic programming [18]–[20]. We improved existing ap-

proaches by reflecting domain knowledge on pyrosequenced

amplicons and by devising memory coalescing techniques.

C. Constructing OTU Models

The fundamental idea is that, for each OTU, we find from

flowgrams the one that best represents the OTU. Assume that

there are n flowgrams F1, F2, . . . , Fn in the input data and

let F denote them collectively. In a typical metagenomics

study, we do not generally know the number of OTUs in

advance. Let k be the number of OTUs existing in a sample
and let O collectively denote the k OTUs O1, O2, . . . , Ok.

We estimate k by clustering flowgrams and then to select

k flowgrams, each of which best represents a cluster. (Note
that a cluster corresponds to an OTU.)

In the selection process, we assume that each flowgram

can belong to multiple clusters. Let zij ∈ [0, 1] indicate
the membership of flowgram i in cluster j. As the selection
criterion, we use the likelihood of the n flowgrams generated
by the k OTUs, according to [14]:

L(F,Z|W,O) =
n∏

i=1

k∏
j=1

[wjP (Fi = Oj)]
zij (3)

where wj corresponds to the weight of cluster j and Z and

W collectively represent zij and wj , respectively.

1) Determining the Number of OTUs: This corresponds
to the problem of figuring out the correct number of clus-

ters existing in data, an important issue in unsupervised

clustering [21]. One approach is to run k-means clustering
for different values of k and select k that maximizes the

median silhouette coefficient [22] of a clustering result.

Another technique is to run hierarchical clustering and cut

the resulting dendrogram at a certain threshold to produce k
flat clusters. In either case, we calculate the pairwise distance

between flowgrams using Eq. 1.

2) Selecting Model Flowgrams: The expectation-

maximization (EM) algorithm [15] can find the best W and

O that maximizes Eq. 3. To this end, the following two

steps are repeated until convergence:

E-step: The expected membership is computed based
on the outcome of the M -step.

ẑ
(t)
ij =

ŵ
(t)
j P (Fi = Ô

(t)
j)∑k

j=1 ŵ
(t)
j P (Fi = Ô

(t)
j)

(4)

where t denotes the iteration count for EM. The initial

estimate ẑ
(0)
ij is set based on the clustering result: if flowgram

i belongs to cluster j, ẑ
(0)
ij = 1; otherwise ẑ

(0)
ij = 0.

M-step: The estimates are updated using the member-
ship estimate from the E-step.

ŵ
(t+1)
j =

1

n

n∑
i=1

ẑ
(t)
ij (5)

Ôj
(t+1)

= argmin
F∈F

[
n∑

i=1

ẑ
(t)
ij d(Fi, F)

]
(6)

IV. RESULTS AND DISCUSSION

A. Experiment Setup

We tested the proposed approach with the data from

pyrosequencing a mixture of 91 full length 16S rRNA

clones from an Arctic soil sample [10]. This data set has

62,873 reads, each of which is 720 bases long. We used

CUDA Toolkit 4.0.17 under an Ubuntu Server 10.04.3 LTS

environment running on a server with two 64-bit quad-core

Intel Xeon X5650 CPUs (2.67 GHz), 64-GB main memory

and four NVIDIA GeForce GTX 580 cards (3-GB GDDR5

each). The baseline for comparison was set to running

AmpliconNoise [10] on the same Linux box as above with

8-node MPI parallelization. For tests in cloud computing, we

used Amazon Web Services (AWS) on which we created a

40-node (Xeon E5645 2.40 GHz, 7.5 GB) cluster.

B. Accuracy Comparison

A key objective in a metagenomics study is to determine

the number of OTUs in a sample accurately. Even for

the same sample, the estimated number of OTUs varies

depending on the strictness of defining an OTU in terms

of the sequence difference ratio. Given two sequences, this

ratio indicates the number of positions having different

377957

Baseline Proposed (1 GPU) Proposed (4 GPUs)
102

103

104

105

106
Ti

m
e

(s
)

Total running time
Sequence similarity measurement
Seq. difference ratio computation

31.0%

66.7%
58h 59m 12s

22.1%

64.4%
6h 19m 44s

15.0%

47.0%

2h 14m 37s

(a)

0 5 10 15 20 25
101

102

103

104

105

Reads (x103)

Ti
m

e
(s

)

Baseline
Proposed (1 GPU)
Proposed (4 GPUs)

(b)

0

1

2

3

4

5

6

7
x 104

Methods

Ti
m

e
(s

)

MPI (8 nodes)
OpenMP (8 threads)
CUDA (1 GPU)
CUDA (4 GPUs)
Amazon (40 nodes)

18h 17m 32s

15h 32m 20s

1h 13m 11s
19m 22s

5h 16m 28s

(c)

Figure 4. Running time comparison (window size m = 88 for GPU runs). (a) Total running time with breakdowns. (b) Effect of read length variations.
(c) Different parallelization options.

0 0.01 0.03 0.05 0.07 0.09
101

102

103

104

105

Sequence Difference Ratio

O

pe
ra

tio
na

l T
ax

on
om

ic
 U

ni
ts

 (O
TU

s)

Baseline
Proposed
Golden

Boundary: Species Genera

Figure 3. Comparing accuracy in terms of estimated number of OTUs.

nucleotides. 3% and 5% ratios are widely used as the bound-

aries for defining species and genera, respectively [14]. We

used this sequence difference ratio as the threshold to cut

the dendrogram in the process of determining the number

of OTUs in Section III-C. Note that using different ratios

(i.e., cutting the dendrogram at different heights) produce

different k values (i.e.different numbers of OTUs).
Fig. 3 compares the number of OTUs returned by the

proposed and baseline methods under the same setup (data,

time and machines) over various sequence difference ratios.

Over the entire range of difference ratio, the proposed

method outperformed the baseline, producing more accurate

estimates to the golden reference. In particular, within the

species boundary, the proposed method estimated 6.7 times

fewer OTUs on average than the alternative. As the ratio

approaches zero, the performance advantage of our method

becomes more salient.

C. Running Time Comparison

Fig. 4(a) depicts the running time of the proposed and

baseline methods, along with the percentage of the two most

time-consuming steps. They are both related to measuring

pairwise distance between sequences by the Needleman-

Wunsch algorithm, and this observation justifies the par-

allelization efforts explained in Section III-B. The 4-GPU

and 1-GPU versions ran 26.29 and 9.34 times faster than

the baseline, respectively. The speed-up by using additional

cards was not linear due to non-parallelized code, but the

speed-up of the two time-consuming steps was close to

linear, as will be shown in Fig. 5(b). Fig. 4(b) compares the

time taken to denoise reads of various lengths. The proposed

method run on 4-GPU configuration is the fastest, and the

proposed method are capable of denoising longer sequences

given the same time.

There exist various parallelization options, and we wanted

to see which is the best option for the denoising problem.

Fig. 4(c) presents the running time of different paralleliza-

tion approaches taken to complete the step labeled ‘Seq.

difference ratio computation’ in Fig. 1(b). Evidently, the

proposed GPU-based approach outperformed the alternatives

by large margin. The execution of MPI version on Amazon

cloud took more than expected, probably due to the fact

that there is limited latency consideration in AWS. To get

the same running time as the 1-GPU run of our approach,

we would need 105 nodes on AWS.

D. Additional Results

Fig. 5(a) shows how the computation window size (Sec-

tion III-B) affects the running time of the two most time-

consuming steps mentioned in Fig. 4(a). As we increase the

window size, the running time decreases until a certain point

(88 in this case). This is because more GPU threads are

used in parallel. However, if we increase the window size

further, then the running time starts to increase, since idling

threads appear. If we further increase the window size, then

the runtime decreases as there are enough threads to form a

new block that can start working.

Fig. 5(b) shows the effect of using different amounts

of GPU cards on the running time of the two most time-

consuming steps. The speed-up was nearly proportional to

the number of GPU cards used. Hence, using more GPU

378958

70 75 80 85 90 95 100 105 110 115
1000

1500

2500

3000

3500

Window Size

Ti
m

e
(s

)

Sequence similarity measurement
Seq. difference ratio computation

(a) Effect of window size m (4 GPUs used)

1 2 3 4
0

2000

4000

6000

8000

10000

12000

GPUs

Ti
m

e
(s

)

Sequence similarity measurement
Seq. difference ratio computation

(b) Effect of the number of GPUs

Figure 5. Additional results.

cards will increase the maximum speed-up we report in this

paper (26.29 times over the baseline) even more.

V. CONCLUSION

According to our experimental results, the proposed tech-

nique was effective both in speed and accuracy. For speed,

our approach reduced the time demand for denoising 62,873

amplicons from almost 2.5 days to only about 2 hours. We

also found out that GPUs could be better for parallelizing de-

noisers than alternatives. For accuracy, the proposed method

reduced overestimating the number of OTUs, producing 6.7

times fewer species-level OTUs on average than a state-of-

the-art existing tool under the same experimental condition.

Leveraged by our approach, we hope that metagenomic

sequencing will become an even more appealing tool for

microbial community analysis.

ACKNOWLEDGEMENTS

This work was supported by the National Research Foun-

dation (NRF) of Korea funded by the Ministry of Education,

Science and Technology (MEST) (No. 2011-0009963) and

by the World Class University Program of NRF funded by

MEST (R33-10076).

REFERENCES

[1] C. Riesenfeld, P. Schloss, and J. Handelsman, “Metage-
nomics: genomic analysis of microbial communities,” Annu.
Rev. Genet., vol. 38, pp. 525–552, 2004.

[2] J. Qin et al., “A human gut microbial gene catalogue es-
tablished by metagenomic sequencing.” Nature, vol. 464, no.
7285, pp. 59–65, Mar. 2010.

[3] P. Eckburg et al., “Diversity of the human intestinal microbial
flora,” Science, vol. 308, no. 5728, pp. 1635–1638, 2005.

[4] P. Lorenz and J. Eck, “Metagenomics and industrial applica-
tions,” Nature Reviews Microbiology, vol. 3, no. 6, pp. 510–
516, 2005.

[5] M. Metzker, “Sequencing technologies—the next generation,”
Nature Reviews Genetics, vol. 11, pp. 31–46, 2009.

[6] M. Margulies et al., “Genome sequencing in microfabricated
high-density picolitre reactors.” Nature, vol. 437, no. 7057,
pp. 376–80, Sep. 2005.

[7] J. Reeder and R. Knight, “Rapidly denoising pyrosequencing
amplicon reads by exploiting rank-abundance distributions.”
Nature methods, vol. 7, no. 9, pp. 668–9, Sep. 2010.

[8] M. Pop and S. L. Salzberg, “Bioinformatics challenges of new
sequencing technology,” Trends in Genetics, vol. 24, no. 3,
pp. 142–149, 2008.

[9] J. G. Caporaso et al., “QIIME allows analysis of high-
throughput community sequencing data Intensity normaliza-
tion improves color calling in SOLiD sequencing,” Nature
methods, vol. 7, no. 5, pp. 335–336, 2010.

[10] C. Quince et al., “Removing noise from pyrosequenced
amplicons.” BMC bioinformatics, vol. 12, p. 38, Jan. 2011.

[11] V. Kunin et al., “Wrinkles in the rare biosphere: pyrose-
quencing errors can lead to artificial inflation of diversity
estimates.” Environmental microbiology, vol. 12, no. 1, pp.
118–23, Jan. 2010.

[12] Z. Zheng et al., “CRiSPy-CUDA: Computing species richness
in 16S rRNA pyrosequencing datasets with CUDA,” Pattern
Recognition in Bioinformatics, pp. 37–49, 2011.

[13] H. Shi et al., “A parallel algorithm for error correction in
high-throughput short-read data on CUDA-enabled graphics
hardware,” Journal of Computational Biology, vol. 17, no. 4,
pp. 603–615, 2010.

[14] C. Quince et al., “Accurate determination of microbial diver-
sity from 454 pyrosequencing data.” Nature methods, vol. 6,
no. 9, pp. 639–41, Sep. 2009.

[15] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of the
Royal Statistical Society, pp. 1–38, 1977.

[16] S. Needleman and C. Wunsch, “A general method applicable
to the search for similarities in the amino acid sequence of
two proteins,” Journal of molecular biology, vol. 48, no. 3,
pp. 443–453, 1970.

[17] R. Farber, CUDA application design and development. Mor-
gan Kaufmann Pub, 2011.

[18] M. C. Schatz et al., “High-throughput sequence alignment us-
ing Graphics Processing Units,” BMC Bioinformatics, vol. 8,
p. 474, 2007.

[19] S. A. Manavski and G. Valle, “CUDA compatible GPU
cards as efficient hardware accelerators for Smith-Waterman
sequence alignment.” BMC bioinformatics, vol. 9 Suppl 2, p.
S10, Jan. 2008.

[20] J. Blazewicz et al., “Protein alignment algorithms with an
efficient backtracking routine on multiple GPUs,” BMC bioin-
formatics, vol. 12, p. 181, 2011.

[21] C. Fraley and A. Raftery, “How many clusters? Which clus-
tering method? Answers via model-based cluster analysis,”
The computer journal, vol. 41, no. 8, pp. 578–588, 1998.

[22] P. N. Tan, M. Steinbach, and V. Kumar, Introduction to data
mining. Boston, MA: Pearson Addison Wesley, 2006.

379959

