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a b s t r a c t

More and more protein structures are being discovered, but most of these still have little functional infor-
mation. Based on the assumption that structural resemblance would lead to functional similarity,
researchers computationally compare a new structure with functionally annotated structures, for high-
throughput function prediction. The effectiveness of this approach depends critically upon the quality
of comparison. In particular, robust classification often becomes difficult when a function class is an
aggregate of multiple subclasses, as is the case with protein annotations. For such multiple-subclass clas-
sification problems, an optimal method termed the maximin correlation analysis (MCA) was proposed.
However, MCA has never been applied to automated protein function prediction although MCA can min-
imize the misclassification risk in the correlation-based nearest neighbor classification, thus increasing
classification accuracy. In this article, we apply MCA to classifying three-dimensional protein local envi-
ronment data derived from a subset of the protein data bank (PDB). In our framework, the MCA-based
classifier outperformed the compared alternatives by 7–19% and 6–27% in terms of average sensitivity
and specificity, respectively. Given that correlation-based similarity measures have been widely used
for mining protein data, we expect that MCA would be employed to enhance other types of automated
function prediction methods.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Owing to recent initiatives in structural genomics, a great num-
ber of protein three-dimensional structures as well as two-dimen-
sional information have been stored in the protein data bank (PDB)
[1,2]. However, protein function annotations remain mostly un-
known, motivating the needs for developing automated function
prediction methods and for making the structure data available
for the study of biological systems. Accordingly, many computa-
tional methods have been proposed as a predictive tool of protein
functions.

Existing approaches can be classified into three types: se-
quence-based, structure-based and hybrid. First, sequence-based
methods transfer annotations from characterized proteins to a
homologue with unknown function [3]. These methods mostly
ll rights reserved.
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exploit the power of alignment and clustering [4], and extra
features such as evolutionary traces [5] and gene ontology annota-
tions [6] are often employed. Second, structure-based techniques
mainly utilize structure information and are often more reliable
than sequence-based tools, since structures are better preserved
than sequences, and proteins with little or no sequence similarity
can also have common structures [6,7]. Examples include PHUNC-
TIONER [7], FLORA [8] and ConSurf [9], which are based on gene
ontology, structural pattern recognition, and evolutionary conser-
vation, respectively. Additionally, Landgraf et al. performed 3-D
cluster analysis through global and regional alignments [10],
whereas Hvidsten et al. established the structure–function rela-
tionship based only on the local substructure similarity [11]. Lastly,
hybrid function prediction methods such as GOdot [12] and Pro-
Func [13] integrate both sequence and structure similarity for
function prediction.

At the core of many automated function predictors is super-
vised classification [14], which typically consists of training and
prediction phases. In the training phase, labeled examples are pre-
pared for training a classifier. Proteins annotated with an identical
function are grouped into a class. For each class, the classifier is
thus trained using multiple instances which belong to the class.
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Conceptually, many classifiers work by internally constructing a
template (or model) of each class that can compactly represent
all the instances belonging to the class [14–16]. In the prediction
phase, a protein structure with an unknown function is compared
with each class template by the trained classifier. After identifying
the class whose template matches the new structure most closely
in terms of the criteria used, the classifier predicts the function of
this new protein as that of the identified class.

Inherently, some protein functions are closely related, and the
corresponding classes can further be grouped into an aggregate
class. For instance, histones H2A, H2B, H3 and H4 are all related
in living organisms and can be collected under an aggregate class
‘Histone.’ This hierarchical class organization is often better than
the flat organization in that the former resembles the biological
hierarchy being modeled more closely. For such multiple-subclass
classification problems, a robust method termed the maximin cor-
relation analysis (MCA) was proposed [17]. MCA can find the opti-
mal aggregate template when correlation is used as the
similarity measure. This aggregate template is called the maximin
(correlation) aggregate template in that it maximizes the minimum
correlation with the templates it represents, thus minimizing the
maximum misclassification risk in the correlation-based nearest
neighbor classification.

Despite this desirable property, MCA has not been widely
known to the bioinformatics community and thus has never been
applied to automated protein function prediction. In this work,
we aim to elucidate how effective MCA can be for improving clas-
sification-based automated protein function prediction. To this
end, we perform MCA on three-dimensional protein structure data
represented as FEATURE vectors [18–20], which characterize local
environments around residues by counting physicochemical prop-
erties within concentric shells around a central point on a residue.
In this FEATURE framework, we compare the proposed MCA-based
classifier with alternative classification techniques in terms of
specificity and sensitivity.

2. Materials and methods

2.1. Maximin correlation analysis (MCA)

MCA arises in correlation-based pattern recognition, in which
the correlation between two vectors is called the cosine similarity
metric [16]; we use the two terms interchangeably in this article.
Note that the correlation defined in the current context is different
from the popular Pearson’s correlation coefficient [21] although
they are connected in that the cosine similarity of a mean-cen-
tered, deviation-normalized data is the same as the Pearson’s cor-
relation coefficient of the data.

The correlation between two nonzero vectors x and y in Rn is
defined as

/ðx; yÞ ¼ xT y
kxkkyk : ð1Þ

A basic property of this correlation function is that it is symmetric,
i.e., /ðx; yÞ ¼ /ðy; xÞ. Another property is that it is (positive) homo-
geneous (of degree 0) in x for fixed y and vice versa: For all t > 0,

/ðtx; yÞ ¼ /ðx; yÞ: ð2Þ

Finally, the correlation /ðx; yÞ is quasi-concave in x for fixed y (and
vice versa) when it is positive: For c P 0, the set

fxj/ðx; yÞP cg ¼ fxjckxkkyk 6 xT yg ð3Þ

is convex (since it is a second-order cone in Rn [22]. In this study,
the correlation /ðx; yÞ is used to measure the similarity between
two FEATURE vectors x and y.
For a given nonzero vector x and a non-empty set y# Rn, the
minimum correlation between x and y# Rn n f0g is

/ðx;yÞ ¼ inf
y2y

/ðx; yÞ ð4Þ

When it is positive, /ðx;yÞ is quasi-concave in x for fixed y. This
property can be seen from the fact that the worst-case correlation
is the infimum of quasi-concave functions and quasi-concavity is
preserved under the operation of infimum [22]. In the current setup,
y corresponds to a protein class that contains a number of FEATURE
vectors as members.

We are interested in the problem of finding a nonzero vector
y# Rn that maximizes the minimum correlation with the set y:

Maximize /ðx;yÞ
subject to x–0:

ð5Þ

This problem is called the maximin correlation analysis problem
(MCAP) (with the set y). From the homogeneous property of the
correlation, we can see that this problem is positive homogeneous,
meaning that if x is a solution, then for any t > 0, tx is a solution.
Moreover, it is unique up to positive scaling [17].

The MCAP has a simple geometric interpretation via the follow-
ing: The arccosine of the correlation between two nonzero vectors
x and y in Rn is the angle between the two vectors, namely

\ðx; yÞ ¼ cos�1 xT y
kxkkyk

� �
:

It is then trivial to see that the problem of finding a nonzero vector
x 2 Rn that minimizes the worst-case angle is equivalent to the
MCAP. Fig. 1A illustrates the worst-case angle minimization prob-
lem with an ellipse in R2. Here, the angular center line does not pass
through the centroid �y of the ellipse y. This angular center line cor-
responds to the maximin template of the group represented by y.

To summarize, identifying the maximin template of a protein
class y corresponds to finding the vector that can represent the
whole y in such a way that the minimum correlation (i.e., the
worst-case similarity) between this vector and the members of
class y is maximized. Note that other types of templates such as
the centroid and the medoid templates (i.e., mean and median,
respectively) cannot in general represent y in this way. Since the
minimum similarity is maximized by representing a class by its
maximin template, we can minimize the risk of misclassification
in the correlation-based nearest neighbor classification by the
maximin templates of classes.

2.2. The FEATURE framework

We apply MCA to FEATURE [18–20], a versatile framework that
can be used for modeling and recognizing functional sites in mac-
romolecular structures. FEATURE vectors can characterize local
three-dimensional environments around protein residues by
counting physicochemical properties within co-centric shells
around a point on each residue. Examples of such properties in-
clude aliphatic carbon, aromatic carbon and nitrogen, amide car-
bon and oxygen, carboxyl and hydroxyl oxygen, sulfur, Van der
Waals volume, (partial) charge, hydrophobicity and solvent acces-
sibility; refer to [20] for more details. The measurement shells are
centered at a common point on a residue, and their radii are mul-
tiples of a user-specified value.

2.3. Data preparation and preprocessing

We derived 1,992,567 FEATURE vectors from a subset of PDB
according to the procedure described in [20]. To remove
redundancy, this subset was prepared in such a way that no two
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Fig. 1. Geometric interpretation of the maximin aggregate template. (A) The angular center line of an ellipse. The angular center line does not pass through the centroid �y (i.e.,
the average) of the ellipse y. (B–D) An example to explain why using the maximin aggregate template would produce a better classification result than using the conventional
centroid or medoid template: (B) When only two subclasses exist, the three types of aggregate templates are all aligned. (C) If there exists another subclass (i.e., subclass 3 in
the figure), and its template is located between those of subclasses 1 and 2, then the three aggregate templates all become different. The maximin aggregate template does
not move, but the location of the centroid template changes. By definition, the medoid aggregate template corresponds to the template of subclass 3. (D) If hm < ho < hc, as
indicated in the figure, then using the centroid aggregate template (as well as the medoid aggregate template, whose angle with the unlabeled object is even greater than hc)
would result in misclassification of the unlabeled vector, whereas using the maximin aggregate template would not.

2 For some algorithms used in comparison, it is difficult to define a discrimination
threshold that can be varied to draw a receiver operating characteristic (ROC) curve
[16]. We thus show the distribution of sensitivity and specificity over every
classification instance, rather than presenting ROC curves.
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structures have greater than 50% sequence similarity. Each vector
represents the 44 physicochemical properties listed in [20], where
each property is measured along 6 co-centric shells with radii of
multiples of 1.25 Angstroms (i.e., the innermost shell has the radius
of 1.25 Angstroms, the second has 2.5 Angstroms and so on). The
total number of dimensions in a vector is thus 44 � 6 or 264.

We further identified those FEATURE vectors that have PROSITE
[23–25] annotations and grouped these vectors with respect to
their PROSITE annotations. It would be ideal to classify these vec-
tors according to their real biological classes and to see how
MCA can rediscover these inherent classes. However, many of the
structures stored in PDB are not experimentally verified, and we
decided to use the annotations in PROSITE, a protein database
independent of PDB, in lieu of experimentally verified class labels.
Finally, we selected 89 groups that have at least 3 and at most 41
subclasses. The total number of vectors included in these 89 groups
was 17,752. More details of the 89 groups and the vectors used are
available from http://dna.korea.ac.kr/pub/mca.

2.4. Classifier implementation

A solver that can solve the MCA problem was implemented with
MATLAB. For comparison, the following alternative classifiers were
considered: a classifier based on the conventional centroid and
median templates, the WebFEATURE [19] classifier that employs
the naïve Bayes model [14], a support vector machine (SVM) based
classifier [15], and the k-nearest neighbor (KNN) classifier [16]. The
WebFEATURE classifier was downloaded from http://feature.stan-
ford.edu and then customized for our experiments. The SVM-based
classifier were implemented on top of WebFEATURE, by replacing
its classification engine with the SVM coded using the LIBSVM
package [26]. All the other methods used for comparison were
implemented with MATLAB.

2.5. Performance measurement

For each of the classifiers used, we tested how well it can distin-
guish a class from another. For a pair of protein classes, we ran-
domly selected 30% of the FEATURE vectors from one class as
positive samples for training and the same number of negative
samples from the other class. The instances not selected for train-
ing were used as test data for computing sensitivity and specificity.
This procedure was repeated for each pair of protein classes,

namely 89
2

� �
¼ 3916 times, for each type of classifier. To assess

classification performance, we performed 10-fold cross-validation
[14,16] and measured the average sensitivity and specificity. For
additional evaluation, a small number of random samples (on aver-
age 9.915 samples per class) were taken from each of the 89 classes
and were used for training. This sampling process was repeated 10
times, and the mean sensitivity and specificity were computed.
Throughout the classification experiments we carried out, the exe-
cution time of all compared methods remained reasonable, not
exceeding a few tens of minutes, on a typical 2.66-GHz Linux ma-
chine with 8-GB memory.

3. Results and discussion

3.1. Verification of the maximin aggregate templates identified

We compared the maximin, centroid and medoid aggregate
templates of a class with respect to their minimum correlation
with the individual vectors in each subclass of the class, as shown
in Fig. 2. The key observation is that the plot for the maximin
aggregate template always has the largest minimum value. That
is, the worst-case (i.e., minimum) correlation is maximized by
using the maximin aggregate template, although it does not always
show the highest level of correlation. For instance, in Fig. 2B, the
worst-case correlation occurs in subclass 2 for all types of aggre-
gate templates, and the minimum value is the largest for the maxi-
min case. We observed the same phenomena for all the 89 classes
tested. This experiment suggests that, by employing the maximin-
based approach, we may reduce the degree of misclassification
committed by traditional centroid- or medoid-based classification
techniques.

3.2. Classification performance comparison

To test the reasoning in the previous paragraph, we performed
classification of FEATURE vectors using the maximin aggregate
templates of the 89 protein classes. An unlabeled data object was
classified into the class whose maximin aggregate template is clos-
est to this object. Fig. 3A shows the performance2 of this MCA-
based classifier measured in terms of sensitivity and specificity
[16]. For comparison, we also tried classification by using the alter-
native classification techniques described in Section 2. Note that, for

http://dna.korea.ac.kr/pub/mca
http://feature.stanford.edu
http://feature.stanford.edu
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clear visualization, the distribution of 3916 specificity and sensitivity
values of each classifier was fitted to a bivariate Gaussian, and only
its arithmetic mean and 0.7r covariance ellipse were drawn in the
plot.

As shown in Fig. 3A, the MCA-based classification outperformed
the alternative methods by 7–19% and 6–27% in terms of average
sensitivity and specificity, respectively. Notably, the MCA-based
classifier showed better performance than the WebFEATURE meth-
od that is highly optimized to FEATURE vector classification. When
compared with the other techniques than WebFEATURE, the pro-
posed approach showed even greater performance advantages.
The performance of SVM and the centroid- and medoid-based clas-
sifiers was similar. For SVM, the linear kernel [14] produced the
best performance while the effect of other parameters such as
the regularization cost [14] was negligible. For KNN, using k = 8
gave the best result. The effects of the parameters of SVM and
KNN on classification performance can be found in Fig. 3B–D. In
the experiment with 10 sampled data sets, the sensitivity and
specificity of the proposed method was 24% and 11% better than
the alternatives, respectively.

The next subsection presents some discussions on the relative
performance of the aggregate-template-based classifiers.

3.3. Reasoning on the relative performance of template-based
classifiers

In our experiments, using the maximin aggregate template pro-
duced better classification results than using the centroid or med-
oid aggregate template. We use Fig. 1B–D to explain possible
reasons. In Fig. 1B, the directions of the templates for subclasses
1 and 2 of a class are indicated as black boxes with white subclass
numbers inside. The maximin aggregate template of these subclas-
ses is also shown, and it is identical to the centroid and medoid
aggregate templates because there are only two subclass tem-
plates. However, the three aggregate templates become all distinct
if another subclass exists in such a way that its template is located
between those of subclasses 1and 2, as shown in Fig. 1C. In this
case, misclassification of an unlabeled data can occur if the maxi-
min aggregate template is not used, as depicted in Fig. 1D. Let
hm, hc, and ho, respectively, denote the angles between the unla-
beled vector and the following three aggregate templates: the
maximin aggregate template, the centroid template, and the aggre-
gate template (of any kind) of a different class. If hm < ho < hc as
indicated in the figure, then using the centroid aggregate template
(as well as the medoid aggregate template, whose angle with the
unlabeled object is even greater than hc) would result in misclassi-
fication of the unlabeled vector, whereas using the maximin aggre-
gate template would not.

3.4. A closer look at classification result

We looked for some unlabeled FEATURE vectors that are accu-
rately classified by the maximin aggregate template, but misclassi-
fied by the other types of templates. We observed that some
vectors in the class MOLYBDOPTERIN are misclassified into the
classes HISTONE, HMG_COA_REDUCTASE, GLYCO_HORMONE or
SIGMA_INTERACT by the centroid aggregate template, while they
are correctly assigned by the maximin aggregate template. We also
found a vector in the class INTERLEUKIN_1 that is misclassified into
GLYCOSYL_HYDROL by the centroid and into THIOL_PROTEASE by
the medoid, but accurately classified by the maximin-based meth-
od. For a more detailed example, Fig. 4A and B show a comparison
of the microenvironments of two FEATURE vectors that have
TRANSFERRIN (subclass 2) PROSITE annotation. The vectors are,
in fact, originated from one protein (PDB ID 1h76), but from differ-
ent alpha helical domains with 72.2% sequence identity. Although
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Fig. 3. Classification performance comparison in terms of sensitivity and specificity. Sensitivity (or true positive rate) is given by TP
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respectively. For each type of classifier, the plot shows the 0.7r covariance ellipse and mean of a bivariate Gaussian fitted to the distribution of 3916 sensitivity and specificity
values. (A) Performance comparison. For SVM and KNN, the parameters producing the best result were used (i.e., the linear kernel and the regularization cost of 1 for SVM and
k = 8 for KNN). (B) The effect of k for KNN. (C) The effect of SVM kernels. (D) The effect of SVM regularization cost.

Fig. 4. Illustration of the microenvironment represented by a FEATURE vector that was correctly classified by using the maximin aggregate template but that was not by using
the centroid aggregate template. (A) The microenvironment of the vector derived from the 10th helix of class TRANSFERRIN. The arrow indicates the residue around which the
microenvironment was centered. Using either the maximin or centroid aggregate template resulted in the correct classification of this vector into TRANSFERRIN. (B) The
microenvironment of the vector derived from the 26th helix of the same TRANSFERRIN class. Note that the two vectors depicted in (A) and (B) originate from the same protein
but from different alpha helical domains therein with 72.2% sequence identity. Their microenvironments are nearly identical as seen above, and using the maximin aggregate
template correctly classified both of them. In contrast, using the centroid aggregate template misclassified the vector in (B) into a similarly looking class, namely
CYTOCHRMOME (PDB ID 1zrt), which has as many helices as TRANSFERRIN. (C) The structure of CYTOCHRMOME with alpha helices colored in green. The images shown were
produced using Pymol [30] and the MBT Protein Workshop (http://mbt.sdsc.edu/software/applications).
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these two vectors are derived from the same protein and share a
great structural similarity, the vector shown in Fig. 4B is misclassi-
fied by the centroid aggregate template into the class CYTO-
CHROME that has many alpha helices (Fig. 4C). This result also
supports our previous finding that the MCA-based classification
technique has the highest correlation value among the three in
case of TRANSFERRIN (subclass 2) in Fig. 2B. Even though the cor-
relation values obtained by all three methods are the lowest for
subclass 2, the maximin aggregate template assigns an uncharac-
terized vector into the right class while the centroid aggregate
template does not.

4. Conclusions

Despite the desirable property of minimizing the misclassifi-
cation risk in the correlation-based nearest neighbor classification,
the maximin correlation analysis (MCA) has never been applied to
the problem of automated protein function prediction. This article
presents the first attempt to apply MCA to large-scale protein
structure data represented in the FEATURE framework. Our exper-
imental result indicates that MCA can significantly boost the clas-
sification performance of this FEATURE methodology. Given that
correlation-based similarity measures have been widely used for
mining protein data [27–29], we expect that MCA would be em-
ployed to enhance other types of automated function prediction
frameworks.
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