
1334 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2009

Run-Time Adaptive Workload Estimation for
Dynamic Voltage Scaling

Sung-Yong Bang, Kwanhu Bang, Student Member, IEEE, Sungroh Yoon, Member, IEEE, and
Eui-Young Chung, Member, IEEE

Abstract�Dynamic voltage scaling (DVS) is a popular energy-
saving technique for real-time tasks. The effectiveness of DVS crit-
ically depends on the accuracy of workload estimation, since DVS
exploits the slack or the difference between the deadline and exe-
cution time. Many existing DVS techniques are pro�le based and
simply utilize the worst-case or average execution time without
estimation. Several recent approaches recognize the importance
of workload estimation and adopt statistical estimation tech-
niques. However, these approaches still require extensive pro�ling
to extract reliable workload statistics and furthermore cannot
effectively handle time-varying workloads. Feedback-control-
based adaptive algorithms have been proposed to handle such
nonstationary workloads, but their results are often too sensitive
to parameter selection. To overcome these limitations of existing
approaches, we propose a novel workload estimation technique
for DVS. This technique is based on the Kalman �lter and can
estimate the processing time of workloads in a robust and accurate
manner by adaptively calibrating estimation error by feedback.
We tested the proposed method with workloads of various char-
acteristics extracted from eight MPEG video clips. To thoroughly
evaluate the performance of our approach, we used both a cycle-
accurate simulator and an XScale-based test board. Our simula-
tion result demonstrates that the proposed technique outperforms
the compared alternatives with respect to the ability to meet given
timing and Quality of Service constraints. Furthermore, we found
that the accuracy of our approach is almost comparable to the
oracle accuracy achievable only by of�ine analysis. Experimental
results indicate that using our approach can reduce energy con-
sumption by 57.5% on average, only with negligible deadline miss
ratio (DMR) around 6.1%. Moreover, the average of computa-
tional overheads for the proposed technique is just 0.3%, which
is the minimum value compared to other methods. More impor-
tantly, the DMR of our method is bounded by 11.7% in the worst
case, while those of other methods are twice or more than ours.

Index Terms�Adaptive �lter, dynamic voltage scaling (DVS),
feedback control, workload estimation.

Manuscript received November 19, 2008; revised February 6, 2009 and
April 9, 2009. Current version published August 19, 2009. This work was
supported in part by the IT R&D program of MKE/IITA 2009-S005-01
(Development of Configurable Devices and S/W environment), by the Korean
Government (MEST) under Korea Research Foundation Grant KRF-2007-
313-D00578 and Korea Science and Engineering Foundation (KOSEF) Grant
2009-0079888, by Yonsei University Institute of TMS Information Technology,
which is a Brain 21 program, Korea, and by IDEC (IC Design Education
Center). This paper was recommended by Associate Editor D. Atienza.

S.-Y. Bang was with the School of Electrical and Electronic Engineering,
Yonsei University, Seoul 120-749, Korea. He is now with the China Global
System For Mobile Communication R&D Group, Mobile Communication
Division, Samsung Electronics, Suwon-City, Gyeonggi-do 443-742, Korea
(e-mail: bsystar@dtl.yonsei.ac.kr).

K. Bang and E.-Y. Chung are with the School of Electrical and Elec-
tronic Engineering, Yonsei University, Seoul 120-749, Korea (e-mail: khbang@
dtl.yonsei.ac.kr; eychung@yonsei.ac.kr).

S. Yoon is with the School of Electrical Engineering, Korea University, Seoul
136-713, Korea (e-mail: sryoon@korea.ac.kr).

Digital Object Identifier 10.1109/TCAD.2009.2024706

I. INTRODUCTION

POWER consumption has become a critical design parame-
ter as more transistors are integrated in a single chip,

owing to the rapid advance of process technology. System-
level power management techniques have received a large
attention particularly from high-performance mobile devices
to effectively reduce the power consumption while minimizing
their performance degradation. Two representative system-level
power management techniques are dynamic power manage-
ment (DPM) and dynamic voltage scaling (DVS).

DPM is a design methodology aiming at reducing power
consumption of electronic systems by performing selective
shutdown of idle system resources [1]. Hence, the quality of
DPM critically depends on the prediction accuracy of how
long the system resources will stay in idle state. On the other
hand, DVS aims at reducing energy consumption (EC) by
scheduling voltage/frequency pairs for a task (or tasks) running
on a computing unit to be completed in and as close as to a
given deadline. One of the critical points in DVS is also the
prediction accuracy of the task (or workload) completion time
being executed.

Even though both methods seem to perform different pre-
dictions, their predictions are eventually in a dual relationship
when the target application is periodic and has a real-time
constraint, since the sum of the task execution time and idle
time is the same as a period. In other words, both techniques
need the knowledge of workloads a priori to maximally exploit
the idle time. Hence, increasing the prediction accuracy is a
very crucial task for both methods.

The prediction accuracy becomes more critical when the
workload shows a large variation and/or nonstationary property.
Many previous approaches dealt with such issues for DPM
[2]–[7]. Surprisingly, only a few previous methods for DVS
focused on the workload issue. Most previous DVS techniques
adopt offline profiling to learn the average-case execution time
(ACET) and/or worst case execution time (WCET). Such ap-
proaches cannot deal with the time-varying workloads. Re-
cently, statistical DVS methods using cumulative distribution
function (CDF) or probability density function (PDF) of work-
loads by offline profiling [8], [9] have been proposed. However,
these methods are still limited to stationary workloads, since
there is no mechanism to update the distribution functions cor-
responding to the workload variation. More details on workload
estimation in DVS will be discussed in Section II.

In this paper, we propose a run-time workload estima-
tion technique for DVS even when the workload is highly

0278-0070/$26.00 © 2009 IEEE

Authorized licensed use limited to: Korea University. Downloaded on September 15, 2009 at 03:08 from IEEE Xplore. Restrictions apply.

BANG et al.: RUN-TIME ADAPTIVE WORKLOAD ESTIMATION FOR DYNAMIC VOLTAGE SCALING 1335

nonstationary. More precisely, a DVS method equipped with the
proposed estimator can learn the workload characteristics with-
out requiring any offline profiling. For this purpose, we adopt
the Kalman filter [10]–[12], which is one of the most popular
adaptive filters. We choose the Kalman filter since it is known to
be quickly adapted to the fast-varying observations with slow-
varying parameters, thus providing a powerful and robust real-
time tracking mechanism. To handle time-varying workloads
more effectively, we further enhance the conventional Kalman
filter by using time-varying process and measurement noise
covariances. The effectiveness of our method is validated by
applying it to a DVS method for MPEG-2 video decoder.
Moreover, note that our method can be applicable to other
periodic applications with soft real-time constraints in a similar
manner without loss of generality.

The remainder of this paper consists of the following. In
Section II, we summarize the previous work of DVS from the
workload estimation perspective. In Section III, we present the
introduction of the target multimedia application and adaptive
filters as preliminaries. Section IV compares the conventional
and proposed Kalman filters from a conceptual point of view.
We then address the overall flows of our method and the details
of the workload estimation technique in Section V. Finally,
we show the experimental results in Section VI followed by
a conclusion in Section VII.

II. RELATED WORK

One of the earliest DVS methods was presented in [13],
where they assumed that the arrival time and deadline of work-
loads are given as constants. The task execution time is also
given as a constant in the unit of CPU cycle. They focused on
the optimal voltage and frequency scheduling in a continuous
domain under an assumption.

On the other hand, many of the task-level DVS techniques
used offline profiling to obtain the ACET and/or WCET to char-
acterize the workloads for the given application. In [14], they
proposed a DVS technique using buffers to further reduce EC
based on WCET workload model. The work in [15] addressed a
DVS method considering task synchronization based on WCET
workload model in multiprocessor environment. The work in
[16] first proposed a DVS method for a task set which consists
of both periodic and aperiodic tasks. They also used WCET
workload model in their method. Another DVS method based
on WCET workload model was presented in [17]. In [18], they
proposed the best effort energy minimization and O2ME (a hy-
brid offline/online minimization) which intentionally miss the
decoding deadline of some frames in multimedia applications.
Missing deadline causes the next frame to be dropped and the
time allocated to the next frame can be utilized as idle time
to save more EC, since a small number of dropped frames are
tolerable to the human visual and auditory system. They also
used WCET workload model for simplicity.

Similar to the task-level DVS techniques, most of the in-
tratask level DVS techniques also used WCET and/or ACET
workload models. In [19]–[22], they selected several control
points inside the program code of a given task by profiling
its control flow graph (CFG). In [19], the authors annotate

the remaining worst-case execution cycle (RWEC) to each
branching edge of the CFG by offline profiling. RWEC is
defined as the number of cycles required to complete the task
from the given branching point. Among these edges, they select
several branching points called voltage scaling edge, which
can maximally reduce EC when DVS technique is applied. In
[21], they proposed a more aggressive DVS method based on
ACET workload model by use of remaining average execution
cycle (RAEC) instead of RWEC. Moreover, they proposed a
method based on remaining optimal-case execution path, which
resulted from the comparison of RWEC and RAEC in [20].
The method in [22] used WCET model to adaptively change
the voltage scaling points.

Some other approaches aimed at tracking the variation of
workload in heuristic manners, particularly for MPEG applica-
tion which is a periodic soft real-time constrained application.
In [23] and [24], the authors used a linear model of frame
decoding time with respect to the frame size. The coefficients
are obtained from offline profiling. They showed that the frame
decoding time (task execution time) is linearly proportional to
the frame size in streaming environment. Moreover, the authors
in [25] used the similar concept for multiframes rather than a
single frame to trade off the Quality of Service (QoS) and EC.
The major drawback is that the estimation accuracy is largely
affected by the workload characteristics used for training (pro-
filing). To minimize such drawback of these approaches, the
authors in [26] used a linear model whose coefficients are
updated as time goes by based on a weighted mean (WM)
algorithm. However, the method incurs large overhead to update
the model coefficients. The linear model approach is further
improved in [27] and [28] by partitioning a task into two
parts—CPU- and memory-bounded parts. They used a linear
model of the execution time of CPU-bounded part with respect
to the frame size. A finer granularity version of the linear model
can be found in [29], where they built a linear model in macro
block level rather than frame level.

While the aforementioned techniques directly estimate the
task execution time, some other methods proposed intratask
level DVS techniques using probability distribution [8], [9] to
estimate the workload in a statistical manner. In [8] and [9],
they used CDF and PDF to represent the run-time distribution
of a given task, respectively. Each program region has its own
CDF or PDF and performs voltage/frequency scheduling in a
statistical manner using the distribution functions. The distribu-
tion function can be obtained through either offline profiling or
run-time monitoring. In the latter case, the monitoring overhead
is not negligible. Moreover, both cases are appropriate for
stationary workloads.

The methods in [30] and [31] proposed a workload estima-
tion technique which requires that the contents (video clips)
should include the decoding time of each frame provided by the
content providers. An MPEG decoder in each client machine
includes the decoding time translation scheme to scale the
content provider’s decoding time to the target client machine.
However, the extra work given to the content providers limits
the practical use of these methods.

The techniques in the final category aimed at esti-
mating the time-varying workloads using adaptive filters.

Authorized licensed use limited to: Korea University. Downloaded on September 15, 2009 at 03:08 from IEEE Xplore. Restrictions apply.

1336 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2009

Fig. 1. Comparison of execution time variations in a multimedia application. (a) Execution time variation with all types of frames considered. (b) Execution time
variation for each frame type.

Proportional–integral (PI)–derivative (PID) controller was pop-
ularly used in these methods for workload estimation. In [32],
they used the PID controller to estimate the frame decoding
time in multimedia applications. In addition, it was used in
[33] for 3-D games. PI controller, which is a variant of PID
controller, was adopted in [34] and [35], where it was used to
estimate the buffer occupancy for DVS targeting data buffered
systems. An integral controller, which is also a variant of PID
controller, was used to estimate the workloads. Based upon
the workload estimation, they compute the data arrival rate
and processing rate which eventually yields system throughput
used for performing DVS [36]. Even though the PID controller
is an adaptive filter, it is well known that it suffers from
overshooting and undershooting, depending on the selected co-
efficients. Hence, the tuning of coefficients critically determines
the prediction accuracy.

Compared to previous approaches, this paper is similar to the
techniques using PID controllers in the sense that both methods
adopt adaptive filters. However, our technique utilizes Kalman
filter, which is more robust than the PID controller in the
estimation, since our method does not require any coefficient
tuning through the offline profiling. Our method performs self-
learning during run time by experiencing the workloads and
tunes its coefficients as the workload property is changing as
time goes by.

III. BACKGROUND

A. Real-Time Multimedia Applications

The focus of this paper is on estimating the processing
time of multimedia workloads, particularly those that have
large variations in processing time. In a real-time multimedia
environment, a server system transmits streaming workloads to
client systems, and each client system must process received
workloads, fulfilling any real-time constraints. Applying a DVS
technique to real-time multimedia applications is challenging
because we typically do not have sufficient information for
workload estimation. There exist various standards for mul-
timedia applications, including MPEG-2/4, H.264, and MP3.
Among these, we consider MPEG-2 in this paper, which is a
general standard for coding audio and video data in a com-
pressed format [37]. MPEG-2 is one of the most popular stan-

dards, and MPEG-2 workloads are typically known to exhibit
large variations in processing time.

There are three distinct frame types in MPEG video data,
namely, intraframe (I frame), predictive interframe (P frame),
and bipredictive interframe (B frame). An I frame is encoded
using a source frame in its entirety. A P frame is encoded
using differences between the current and previous frames.
A B frame is created using the previous and next I or P
frames. In the case of the P and B frames, a lossy compression
technique is employed for motion estimation in order to reduce
the transmitted frame size. It is the different MPEG decoding
procedures for different frame types that cause large variations
in the processing time.

Fig. 1 shows the processing time variations for decoding an
MPEG-2 video clip. When we do not make any distinctions of
frame types and consider the clip as it is, the processing time
of the clip exhibits a large variation during the whole decoding
procedure, as shown in Fig. 1(a). In contrast, when we consider
the processing time of each frame type separately, the degree
of variation is reduced to some extent, as shown in Fig. 1(b).
In this context, various techniques have been proposed, which
aim at estimating the processing time of each frame type,
one type a time [23], [25]–[28]. However, when the variation
of processing time for each frame type is large even after
the frame-type-based separation, these techniques often fail to
provide satisfactory estimation performance. This is because
they are based upon relatively simple estimation models and
the resulting real-time tracking ability is limited.

B. Adaptive Filters

For more accurate estimation of workload processing time,
we can use adaptive filters that employ feedback control mech-
anisms for correcting estimation errors. For a system that
processes workloads w1, w2, . . . , wn, an (adaptive) filter con-
siders all the previous workloads w1, w2, . . . , wn�1 and (noisy)
measurement �wn in order to estimate wn.

Filters using the time-invariant moving average (MA) and
WM are the simplest and most widely used [38]. The MA filter
examines a fixed number of prior workloads to estimate the cur-
rent workload. When the window size is L and the ith workload
is w[i], the estimate by the MA filter is given by w[n + 1] =

Authorized licensed use limited to: Korea University. Downloaded on September 15, 2009 at 03:08 from IEEE Xplore. Restrictions apply.

BANG et al.: RUN-TIME ADAPTIVE WORKLOAD ESTIMATION FOR DYNAMIC VOLTAGE SCALING 1337

(1/L)
�L�1

i=0 w[n � i]. That is, previous L workloads are used
to estimate the next workload, giving equal weight to each
workload. One the other hand, the WM filter uses the weighted
average of the previous workloads for estimation. When the
order of the current workload is N and the weight for the most
recent workload is � (0 < � < 1), the estimate by the WM
filter is w[n + 1] =

�N
i=1 �N�i+1w[i], where we require all

weights to have a sum of one, i.e.,
�N

i=1 �i = 1. The WM filter
may be more attractive than the MA filter in that the weights
can be adjusted for faster adaptation, but finding the optimal
weights for different workloads is not trivial.

The PID control technique is also generally for error correc-
tion in estimation. When the actual measurement and estima-
tion of the ith workload are denoted by wi and �wi, respectively,
error �i is simply calculated as wi � �wi. Then, a PID con-
troller calculates correction value �wi as �wi = kP �i +
(1/kI)�WI �i + kD((�i � �i�WD)/WD), where kP , kI , and
kD are the coefficients for proportional, integral, and derivative
controls, respectively (WI and WD are window sizes for each
feedback control). We can easily estimate the processing time
of the next workload by adding �wi to the previous workload
estimate.

C. Kalman Filter

Kalman filter is another popular adaptive filter used in many
practical and theoretical fields for accurately estimating the
previous, current, and future states of a discrete-time controlled
process [10]–[12]. The state x of this process and its corre-
sponding measurement z are governed by the linear stochastic
difference equations

xn = Axn�1 + Bun�1 + wn�1 (1)
zn = Hxn + vn (2)

respectively. The matrix A relates the states at time steps
n � 1 and n, in the absence of process noise or control input.
The matrix B relates the optional control input u to the state
x, and the matrix H relates the state x to the measurement
z. The random variables wn and vn denote the process and
measurement noises, respectively, and we assume that wn and
vn are independent white Gaussian noise following

w � N(0, Q) (3)
v � N(0, R) (4)

where Q and R are the process and measurement noise covari-
ances, respectively.

We then define a priori and a posteriori estimate errors as
e�

n � xn � �x�
n and en � xn � �xn, respectively, where �x�

n is
our a priori state estimate given the knowledge on the process
prior to step n and �xn is our a posteriori state estimate after
measurement zn has been made. Based upon these estimates,
the a priori and a posteriori estimate error covariances are
given by

P �
n = E

�
e�

ne�T
n

�
(5)

Pn = E
�
eneT

n
�

(6)

respectively.

In the Kalman filter framework, an a posteriori state estimate
�xn is represented by a linear combination of an a priori state
estimate �x�

n and a weighted difference between measurement
zn and predicted measurement H�x�

n

�xn = �x�
n + K

�
zn � H�x�

n
�

(7)

where the difference (zn � H�x�
n) is called the measurement in-

novation. The matrix K is chosen to maximize the a posteriori
error covariance Pn, and a solution is

Kn = P �
n HT �

HP �
n HT + R

��1 (8)

where Kn is often termed as the Kalman gain.
To estimate the states of a process with measurements, the

Kalman filter employs a feedback control technique in which
the state at some time is estimated first and feedback is then
provided in the form of noisy measurements. The Kalman filter
thus works in two phases, as shown in Fig. 2. In the time update
phase, the previous state and estimation error covariance are
updated with the current information by the following time
update equations:

�x�
n =A�xn�1 + Bun�1 (9)

P �
n =APn�1AT + Q. (10)

In (9), the conventional Kalman filter first projects the state
ahead from the previous state �x�

n�1 and certain input matrix
Bun�1. The filter then projects the error covariance ahead with
process noise covariance Q in (10).

After the time update phase, the measurement update phase
(i.e., feedback update phase) starts with measuring actual work-
loads related to the state parameters and computes the following
measurement update (or feedback update) equations:

Kn =P �
n HT �

HP �
n HT + R

��1 (11)

�xn = �x�
n + Kn

�
zn � H�x�

n
�

(12)

Pn =(I � KnH)P �
n . (13)

In this measurement update phase, the Kalman gain is first
computed by using the a priori estimate error covariance P �

n
and measurement noise covariance R. The filter then updates
the current state matrix �xn and a posteriori estimate error co-
variance Pn, using the Kalman gain. Note that we use the terms
“measurement update” and “feedback update” interchangeably
in this paper.

IV. COMPARISON BETWEEN THE PROPOSED METHOD AND
THE CONVENTIONAL KALMAN FILTER

In this section, we compare and contrast the operation of the
proposed estimation technique with that of the conventional
Kalman filter. As shown in Fig. 2, both methods are based
upon the two-step cyclic operations—time and feedback up-
date phases. The equations in each phase are almost identical,
except for the following: The process and measurement noise
covariances are time varying in the proposed method and are
denoted by Qn and Rn, respectively, whereas they are constant

Authorized licensed use limited to: Korea University. Downloaded on September 15, 2009 at 03:08 from IEEE Xplore. Restrictions apply.

1338 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2009

Fig. 2. Comparison of the operations of the proposed and conventional Kalman filters.

in the conventional Kalman filter and are represented by Q
and R, respectively. With the most notable difference of the
proposed technique being the ability to handle nonstationarity,
our approach is referred to as the nonstationary Kalman filter
(NS-KF) in what follows.

The physical meaning of Qn and Rn in this paper also differs
from that of Q and R in other domains such as communications.
In the applications of the conventional Kalman framework to
communication systems, the process noise models the uncer-
tainty of a signal source, and the measurement noise models
the noise effect of a channel. Obviously, these two factors are
independent, and most approaches in this area assume that they
are constant. In contrast, we use the process noise to model
the uncertainty of hardware, such as pipeline stalls, branch
prediction misses, and cache misses. Such uncertainty affects
the frame decoding time with a different amount for each frame.
In addition, we model the imperfect prediction ability of the
estimator as the measurement noise, which is the only error
source in our environment.

In other words, the measurement noise covariance in this
paper corresponds to the prediction error (i.e., the difference
between the predicted and measured values) covariance. As for
the process noise, we assume that it is caused by the unpre-
dictability of the hardware system used. Under this assumption,
we can further assume that the process noise accounts for a
part of the measurement noise, since the estimator itself is
also executed in the same hardware on which workloads are
processed. Consequently, we let the process noise covariance
be proportional to the prediction noise covariance with a pro-
portional coefficient being less than one, as shown in (22) of
Section V. In NS-KF, additional feedback by Rn thus exists
from the feedback to time update phase, as represented by the
dotted arrow in Fig. 2.

According to our experimental study, using time-varying
noise covariance values is critical to increase the estimation
performance. As presented in Section VI, the aforementioned
assumptions on the process and measurement noise are well

Fig. 3. Proposed estimator using adaptive filter.

supported by the experimental result we obtained. For instance,
the result labeled with TKF in Table IV was obtained by setting
the process noise covariance as a constant independent of the
measurement noise but was inferior to the result obtained from
the proposed NS-KF method with respect to all the criteria
used. Further details on the proposed NS-KF method are avail-
able in Sections V-B and C.

V. WORKLOAD ESTIMATION FOR REAL-TIME
MULTIMEDIA APPLICATIONS

In the previous section, we briefly compared NS-KF to the
conventional Kalman filter from the conceptual point of view.
In this section, we describe the details of NS-KF when we use
it for DVS as a workload processing time estimator in MPEG
applications.

A. Overall Architecture

Fig. 3 shows the overall architecture of the proposed esti-
mator. On receiving workloads, the client system continuously
processes them in order. At the same time, the proposed es-
timator embedded in the client system continuously estimates

Authorized licensed use limited to: Korea University. Downloaded on September 15, 2009 at 03:08 from IEEE Xplore. Restrictions apply.

BANG et al.: RUN-TIME ADAPTIVE WORKLOAD ESTIMATION FOR DYNAMIC VOLTAGE SCALING 1339

the processing time of the next workload and adjusts the
voltage and frequency level in order to achieve power savings
by exploiting the idle time of each workload. The proposed
estimator consists of four functional modules named Timer,
Observer, Adaptive filter, and DVS module in addition to the
main processing unit (not shown in the figure). All modules can
be implemented at the application level without any hardware
support. We exploit the fact that the variation in processing
time reduces if we divide frames according to their types and
analyze each frame type separately, as discussed in Section III.
The proposed estimator can thus be regarded as a collection of
three estimators, one for each MPEG frame type. All equations
and algorithms presented in this section apply equally to every
frame type.

The Timer module is to measure the actual processing time of
each workload and transfers it to Observer. The Observer mod-
ule receives the actual processing time information from the
Timer and additional workload information (e.g., start/end time
and workload type) from the multimedia application currently
in execution. The Observer module then calculates various
statistics, including the average, variance, and error covariance
for the correction of estimation errors. These statistics are then
transferred to the Adaptive filter. Using the measurement update
equations and the error information received from the Observer,
the Adaptive filter module performs feedback control for cor-
recting error covariances and estimating workload processing
time. This module is based upon the Kalman filter. Finally,
the DVS module sets appropriate voltage and frequency to be
used by the client system based upon the estimated workload
processing time. More details of the Observer, Adaptive filter,
and DVS module are provided next. We also explain how to
implement an MPEG decoder based on our DVS technique.

B. Observer

The major role of the Observer is to compute R, which
is the measurement noise (or error) covariance. To handle
nonstationary workloads, we assume that R is time varying
and denote the measurement error covariance at time step n
by Rn. Since the state x in this paper is a scalar variable (i.e.,
processing time), so is the covariance Rn.

Let Zn = {Zi | i = 1, 2, . . . , n} be he set of measurement
values provided by the Timer block and �X�

n = { �X�
i | i =

1, 2, . . . , n} the set of a priori estimates obtained from the
Adaptive filter block. To consider the time-varying nature of
the workloads, we set Zi and �X�

i to �n�i+1zi and �n�i+1�x�
i ,

respectively, where � is a weighting factor like in WM. Then,
the measurement error covariance at time step n is given by

Rn =E
��

Zn � �X�
n

	2

(14)

=

n�

i=1

�
Zi � �X�

i

	2

n
. (15)

To reduce the computation complexity of (15), we approxi-
mate it as follows:

Rn = (1 � �) × Rn�1 + � ×
�
zi � �x�

i
�2 . (16)

Using (16), we can therefore evaluate Rn by only using Rn�1
and the current measurement without storing all prior values.

C. Adaptive Filter

This module estimates the processing time of workloads and
provides DVS module with the estimated processing time so
that it can adjust the voltage level adaptively. As estimator,
we employ the Kalman filter and implement its time and
measurement update equations with some modifications.

Most importantly, we use time-varying process and mea-
surement error covariances and denote them by Qn and Rn
to handle nonstationary workloads. Their necessities in our
environment are already discussed in Section IV. This may
be a major difference between our approach and the conven-
tional Kalman filter framework, which usually assumes that
the process and measurement error covariances Q and R are
constant. It is known that the stabilization of the a posteriori
error covariance Pn and the Kalman gain Kn are both related
to Q and R, and it matters how to model Q and R appropriately.
The large degree of variation in workload processing time and
the result from our empirical studies indicate that using constant
Q and R leaves room for improvements in accuracy.

Example 1: Fig. 4 shows how the quality of estimation is
affected as the value of Qn varies. The workload used is an
MPEG video clip called bike. Four different blocks, each of
which has 30 frames, were selected, and the average estimation
error was measured for each block using different Qn values. It
is evident that the estimation quality does get affected by using
different Qn values. �

Other minor adjustments we made are as follows. The ma-
trices used in the update equations become scalar because the
state variable x and its a priori and a posteriori estimates �x�

and �x are scalar. Hence, we set A = H = 1. In addition, we
assume that no control input exists and set B = 0.

After reflecting these changes into the original Kalman equa-
tions, the time update equations now become

�x�
n = �xn�1 (17)

P �
n =Pn�1 + Qn (18)

and the measurement update equations are given by

Kn = P �
n

�
P �

n + Rn
��1 (19)

�xn = �x�
n + Kn

�
zn � �x�

n
�

(20)
Pn = (1 � Kn)P �

n (21)

where the time-varying measurement noise covariance Rn is
easily provided by the Observer module, as already explained
in Section V-B. In order is the explanation on determining the
value of Qn.

According to our experiments, the optimal value of Qn varies
with respect to the location of the frame whose processing time
is under estimation.

Example 2: As shown in Fig. 4, we measured the average
estimation error by varying the value of Qn in four different
regions of the video clip used. Each region consists of 30
frames. Clearly, the best value of Qn is different, depending
upon the frame location. �

Authorized licensed use limited to: Korea University. Downloaded on September 15, 2009 at 03:08 from IEEE Xplore. Restrictions apply.

1340 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2009

Fig. 4. Impact of varying the Qn of measurement update phase on the estimation performance. The curve in each pane represents the rms measured in a block
of 30 frames taken out of bike, which is an MPEG video clip, and the range of frames using this experiment is from the first frame to 120th frame in bike.

As shown in Example 2, the value of Qn for the minimum
estimation error varies, depending on the frame sequences.
For this reason, Qn should be considered as a time-varying
factor proportional to the measurement error covariance Rn, as
discussed in Section IV. Hence, Qn can be expressed as

Qn = �Rn (22)

where � is a positive coefficient whose value is initially set to
unity and is then adjusted adaptively as the estimation process
proceeds. The role of � is to reinforce the weakness of a
weighting factor �. More details of determining the propor-
tional coefficient � will follow shortly.

Algorithm I outlines the algorithm used by the Adaptive
filter module. For each frame type, the following operations are
performed:

1) Line 1. The parameter and Qn values are initialized. The
proportional coefficient � and Qn are set to one, and
another parameter � is set to 0.1.

2) Lines 2–12. For each time step n, the procedures de-
scribed in Lines 3–11 are executed.

3) Lines 3–4. When the value of Qn is plugged into the
time update equation (18), two adjacent values of Qn are
considered as well. This is for increasing the accuracy of
prediction by examining additional values of Qn. These
two values are determined by

QR
n =

Qn

1 � �
(23)

QL
n =Qn(1 � �) (24)

where � is a fixed constant (0 < � < 1), and QR
n and

QL
n represent the right- and left-adjacent values of Qn,

respectively.

4) Line 5. The time update equations are evaluated using
three different choices of the estimation error covariance,
namely, Qn, QR

n , and QL
n . The a priori processing time

estimate �x�
n is returned along with three different values

of P �
n . The return values P �

n,Qn
, P �

n,QR
n

, and P �
n,QL

n
are

computed by evaluating (18) using Qn, QR
n , and QL

n ,
respectively.

5) Line 6. The estimated processing time �x�
n is sent to the

DVS module.

Authorized licensed use limited to: Korea University. Downloaded on September 15, 2009 at 03:08 from IEEE Xplore. Restrictions apply.

BANG et al.: RUN-TIME ADAPTIVE WORKLOAD ESTIMATION FOR DYNAMIC VOLTAGE SCALING 1341

TABLE I
DVS TABLE

6) Line 7. Once the frame has been processed, the Observer
module measures the actual processing time zn and trans-
mits it to the Adaptive filter.

7) Line 8. The estimation error covariance Rn is calculated
using current estimation and actual measurement.

8) Line 9. The estimation error covariance Rn is plugged
into the measurement update equations, which then re-
turns three a posteriori state estimates �xQn , �xQR

n
, and

�xQL
n

. These estimates are the result of evaluating (21) us-
ing the predetermined P �

n,Qn
, P �

n,QR
n

, and P �
n,QL

n
values,

respectively.
9) Lines 10–11. The squared error (zn � �xn)2 values are

calculated for each of the three state estimates. We then
set the value of � to the process error covariance of the
estimate giving the lowest squared error. This operation
is performed every M frames.

10) Line 12. The value of Qn is updated using the new value
of � and Rn.

D. DVS Module

The idea of DVS is to dynamically adjust the supply voltage
depending upon the processing need, thus reducing the overall
power consumption. A DVS controller typically maintains a ta-
ble in which each line contains a pair of a supply voltage and its
corresponding operating frequency, as shown in Table I. Given
a processing time, the operating frequency is first determined,
and the corresponding supply voltage is then retrieved from the
table using the frequency as a key.

In the proposed architecture, the processing time of the frame
at time step n is estimated by the Adaptive filter module and is
provided as the a priori state estimate �x�

n . Let fi denote the
frequency of row i in the DVS table. Assume that the rows in
the DVS table are arranged in descending order of frequency.
That is, fi > fj iff i < j. Then, the row index for �x�

n is set to
the minimum i such that the inequality

fi �
1

min {�x�
n + SO,DL}

(25)

is fulfilled. In (25), SO and DL represent the overhead of
switching frequencies and the given deadline, respectively. It
typically takes only tens of microseconds to switch frequencies,
and SO is thus negligible in most cases. The DVS module
sets the supply voltage of the processor used by reading the
information in row i.

A DVS table usually contains power information, such as
dynamic power (PD) and leakage power (PL) [39] for each
line. Dynamic power PD is given by PD = CsV 2

ddfi, where
Cs, Vdd, and fi are the switching capacitance, supply voltage,

Fig. 5. Entire workflow of libmpeg-2 extended for DVS.

and operating frequency corresponding to row i in the DVS
table. Leakage power PL is calculated by PL = (VddIsub +
|Vbs|Ij)Lg , where Isub, |Vbs|, Ij , and Lg are device-specific
parameters defined in [39].

The DVS table we used in this paper is shown in Table I. It
has five different voltage–frequency pairs, and each value in the
last column corresponds to the total power consumption (PD +
PL) for each row.

E. MPEG Decoder Implementation

We extended libmpeg-2 to perform DVS with the proposed
workload estimator. The entire workflow of the extended
libmpeg-2 is shown in Fig. 5, where some blocks are added
for filter operations (blocks with dot pattern) and some are for
performing the estimation and error correction (gray blocks) for
performing workload estimation and DVS. First, the decoder
initializes internal buffers and filter-related variables. Note that
we implemented a filter for each frame type. In other words,
there are three independent workload estimators, and each
of them is dedicated to each frame type. After initialization,
it starts to decode a series of MPEG-2 frames. As a first
step, it extracts the frame type from the frame header and
selects the corresponding workload estimator. If it is still under
training, the decoder decodes the frame with the maximum
voltage/frequency pair and measures the decoding time. The
measured time is used for the decoding time of the next same-
type frame. The training period is defined in terms of the
number of frames. In our case, we set it to one in order not
to waste the idleness of the initial frames. After training, it
performs the following steps iteratively until the last frame is
completely decoded. First, the decoder selects the correspond-
ing workload estimator and performs the frame decoding time
estimation (estimation stage) for the next frame. Based upon
the estimation, it calculates the optimal voltage/frequency pair
(frequency calculation stage) and sets the voltage/frequency
pair (DVS stage). Then, it decodes the frame with the selected
voltage/frequency pair and measures its actual decoding time
(actual frame decoding stage). Finally, it performs the error
correction and updates the filter equation.

Authorized licensed use limited to: Korea University. Downloaded on September 15, 2009 at 03:08 from IEEE Xplore. Restrictions apply.

1342 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2009

TABLE II
VIDEO CLIPS USED FOR SIMULATION

VI. EXPERIMENTAL RESULTS

A. Experiments Setup

We conducted three sets of experiments to appreciate the
impact of our method. In the first set of experiments, we
evaluated the workload estimation accuracy of several filter-
based methods, including ours for MPEG video clips, as well as
synthetic workloads. In the second set of experiments, we tested
how each estimation technique well incorporates with DVS
in terms of energy saving and real-time constraint satisfaction
in MPEG environment. For these two sets of experiments,
we used a cycle-accurate simulator called SoC Designer from
Carbon Design Systems [40]. In the final set of experiments,
we validated our method by measuring the EC of XScale-based
test bed (HBE-SM270 DVB) adopting PXA270 processor [41],
while playing real multimedia application. In both simulation
and actual measurements, we used libmpeg-2 [42] decoder,
which is modified to perform DVS incorporating with workload
estimation techniques compared.

We used eight video clips in all experiments except those
with synthetic workloads. The clips are classified into two
groups, depending on the magnitude of workload variation.
In this purpose, we measured the workload variation of each
type of frames, as well as the variation of all types of frames
together, as shown in Table II, where Var denotes the variation
of the overall frame decoding time, while Ivar, Pvar, and Bvar
correspond to the execution time variations of I-, P-, and B-type
frames, respectively.

To run the video clips in Table II, we used the extended
libmpeg-2 mentioned in Section V-E as our method. All other
filter-based workload estimators are similarly embedded in
libmpeg-2 for comparison purposes. We used the Monte Carlo
simulation method to find the best parameter set for each
technique by stimulating all eight video clips. The chosen best
parameter set for each technique yields the minimum average
mean squared error (MSE) among all tested parameter sets.

B. Workload Estimation Accuracy Comparison

We compared several filter-based methods [(MA, WM, PID,
NS-KF, and traditional Kalman filter (TKF)] for appreciating
their relative estimation accuracy for the time-varying work-
loads. All these methods have an estimator for each frame
type for fair comparison. Among these methods, TKF uses
a time-varying measurement noise covariance and a constant

Fig. 6. MSE variation according to Qn window size.

Fig. 7. Convergence speed comparison. (a) bike.mpg. (b) RedsNight.mpg.

process noise covariance unlike our method. The objective of
this experiment is to measure how quickly and precisely each
method tracks the variation of workload.

First, we conducted an experiment to decide how frequently
we must update Qn to tune the performance of NS-KF ap-
propriately. As shown in Fig. 6, we vary the Qn window size
from 1 to 40 frames while measuring MSE for two video
clips—“bike.mpg” and “us.mpg.” A window size of seven
is good enough for “bike.mpg,” while a window size of 27
saturates the MSE of NS-KF for “us.mpg.” From these exper-
imental results, we set the window size to 30 for the entire
experiments conducted in this section.

We next compared the methods in MPEG environment and
then compared two most dominant methods (NS-KF and PID)
more in details using synthetic workloads.

Fig. 7 shows the convergence speed of each method for two
video clips—“bike.mpg” and “RedsNight.mpg” which have
highly time-varying property, where the estimation accuracy is
defined by the average absolute difference of the actual and
estimated decoding times over the actual decoding time for
each frame. In Fig. 7(a), NS-KF outperforms all other methods
except TKF. Both NS-KF and TKF reach 80% of estimation

Authorized licensed use limited to: Korea University. Downloaded on September 15, 2009 at 03:08 from IEEE Xplore. Restrictions apply.

BANG et al.: RUN-TIME ADAPTIVE WORKLOAD ESTIMATION FOR DYNAMIC VOLTAGE SCALING 1343

Fig. 8. Probability distribution of estimation errors for NS-KF. (a) bike.mpg.
(b) us.mpg.

TABLE III
MSE COMPARISON OF ALL FILTER-BASED METHODS (×10�6)

accuracy after experiencing about 40 frames, while others are
far inferior to these two methods. On the contrary, other meth-
ods are comparable (even still inferior) to NS-KF except TKF.
It means that TKF behaves well when it is well customized for
the given workload, but its performance is severely degraded
when the workload characteristics are changed.

The estimation accuracy of NS-KF is analyzed from the other
perspective, i.e., variation as shown in Fig. 8. In Fig. 8(a), NS-
KF shows that the estimation error is mostly bounded within
10% for 90% of frames.1 A similar trend was observed in
Fig. 8(b), meaning that NS-KF does not incur severe estimation
accuracy in average case, as well as in instantaneous case. We
also compared all the methods for all the tested video clips
in terms of MSE, as shown in Table III. It confirms that NS-
KF outperforms all other methods, particularly for the large
variation video clips.

For a detailed comparison of NS-KF and PID, we measured
MSE for the workload given in

w = A × sin(2�ft) + n(µ, �2) (26)

1The decoding deadline (rate) was given as 33 ms (30 frames/s); hence,
±0.033 s corresponds to ±10% of the estimation error.

Fig. 9. Comparison of NS-KF and PID for synthetic time-varying and noisy
workload. (a) MSE for frequency variation. (b) MSE for noise variation.

where w is the expected frame decoding time at time t, A is
the amplitude, and f is the frequency. Moreover, n(µ, �2) is a
Gaussian noise of which average value and standard deviation
are µ and �, respectively.

First, we measured the MSE of both methods while changing
f from 0.125 to 1 to appreciate their workload tracking ca-
pability as the time-varying speed of the workload increases.
We set A to 0.015; hence, its peak-to-peak value is 0.03,
which approximately corresponds to a single MPEG frame
decoding deadline in millisecond unit. Moreover, we set µ to
0.015, which is half of the single frame decoding time, and
finally, we set � to 0.003 by assuming that most of the frame
decoding times are bounded within –30% of µ. Fig. 9(a) clearly
shows the superiority of NS-KF over PID, since the MSE of
NS-KF much slowly increases compared to that of PID as
the frequency increases. More specifically, NS-KF completely
outperforms PID when the frequency becomes larger than 0.7.
In other words, NS-KF tracks the fast time-varying workload
much better than PID. In addition, we performed the sensitivity
analysis of both methods for the noise, as shown in Fig. 9(b),
which clearly shows that NS-KF is more robust to the noise
than PID.

C. Impact on DVS Comparison

In these experiments, we tested how each method cooperates
well with DVS to save energy while satisfying the given real-
time constraint. We compare the five filter-based methods in
terms of the following performance metrics.

1) Energy Consumption (EC): the EC with DVS adopt-
ing the target workload estimation method over the EC
without DVS. Note that it includes not only the energy
consumed by the application program but also the energy
consumed by each DVS method.

2) Decision Accuracy (DA): How closely the DVS with
the target workload estimation method selects a voltage/
frequency pair to the optimal voltage/frequency (v/f)
pair. More precisely, DA = 1 � (|OI � SI|/NI), where
OI , SI , and NI are the index of the optimal v/f pair,

Authorized licensed use limited to: Korea University. Downloaded on September 15, 2009 at 03:08 from IEEE Xplore. Restrictions apply.

1344 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 9, SEPTEMBER 2009

Fig. 10. EC comparison of filter-based DVS methods.

the index of the selected v/f pair, and the number of v/f
pairs, respectively. Moreover, note that the index of each
v/f pair is from one to the number of total v/f pairs and
the index of the v/f pair with the highest voltage is one,
as in Table I.

3) Hit Ratio (HR): similar to DA, but HR only considers
the DVS that selects a v/f pair that is exactly the same
to the optimal case. Hence, HR = (number of selections
of optimal v/f pair)/(number of total decisions).

4) Deadline Miss Ratio (DMR): the number of frames
missing deadline due to DVS over the total number of
frames.

5) Computation Overhead Ratio (COR): the increase of
the execution time of libempeg-2 equipped with the target
workload estimation method over the execution time of
original libmpeg-2.

We also compared the five methods with the oracle method,
which is an ideal method and only possible with offline work-
load analysis. Note that the oracle method guarantees the
minimum EC. In addition, it guarantees that MSE, DMR, and
COR are zero, while DA and HR are 100%.

Fig. 10 shows the EC of all the aforementioned methods,
while Table IV shows the comparison for all other metrics.

NS-KF outperforms all other filter-based methods and com-
parable to oracle method in terms of EC, and the average energy
saving of NS-KF is 57.5% when we compare ours with the
original decoder which does not use a DVS scheme. It means
that NS-KF is very effective to reduce the EC by providing
the high workload estimation accuracy for DVS. However, it
shows a little bit (less than 2%) more EC than PID for the video
clip “bike.” The reason for this result can be easily found in
Table IV, where NS-KF shows 1.3 of DMR while DMR of
PID is 17.3, meaning that PID misses the deadline 13.3 times
more frequently than NS-KF. In other words, PID achieves
higher energy saving while sacrificing the real-time constraint
satisfaction. All other methods show similar trend in DMR,
particularly for the video clips with a large variation (clips in
lower four rows in Table IV). Moreover, an average DMR for
NS-KF is just 6.1%, which is an acceptable value for human
visual system.

TKF was comparable to NS-KF in Section VI-B for some
video clips. However, it shows very poor performance in all

metrics due to the constant process noise covariance Q, while
NS-KF uses Qn, which is time varying as the workload varies.

DA and HR also support the superiority of NS-KF over the
other methods. HR indicates that NS-KF consistently selects
the optimal v/f pair with 80% or higher accuracy for all video
clips except “us,” while others show a large variation and lower
average value in HR compared to NS-KF. More interestingly,
the DA of NS-KF is always higher than 90%, meaning that NS-
KF selects a v/f pair close to the optimal v/f pair, even when
it misses the optimal v/f pair, owing to the high MSE unlike
other methods. We can also confirm that NS-KF is stronger
than the others in largely time-varying environment through a
comparison of average values between workloads with small
and large variances. The difference of estimation performance
values is larger in the case of largely varied workloads.

Finally, we compared COR for all these methods. Surpris-
ingly, NS-KF shows less COR than the other methods, even
though it shows better performance in all other metrics. The
low overhead of our method is mainly due to the absence of
complicated operations like matrix manipulations and efficient
computations of the update equations, because the size of a
matrix used in our method is 1 × 1, which only causes simple
additions and multiplications, as shown in Section V. Also
note that our method is designed for intertask level rather than
intratask level. Hence, the estimation is performed only once
per frame.

D. Validation With XScale-Based Test Bed

We validated our method in real environment by the use
of XScale-based test bed. The board supports DVS with five
v/f pairs by adopting PXA270 processor. The five v/f pairs
supported in this board are identical to Table I. In addition,
it can display the decoded video sequence on its own liquid
crystal display (LCD). The detailed specification of the board
can be found in [43]. On this board, we ran mplayer, which is
an extension of libmpeg-2, a software MPEG decoder in our
simulation-based experiments. Note that mplayer is identical
to libmpeg-2 in decoding capability. However, it has more
functionalities to interface with other peripheral devices, which
is important in real board-level validation. For instance, it
transmits each decoded frame to the LCD controller. The details
of mplayer can be found in [44].

In this board environment, we compared our method, PID,
and oracle method when it decodes “bike.mpg,” which is one
of the highly time-varying workloads, as indicated in Table IV.
We compared these methods from a QoS perspective. In our
case, QoS can be measured by the decoding time and EC.
When a frame is decoded over the given timing constraint, two
types of treatments are possible. First, the decoder sends it to
the display, which increases the overall decoding time with the
display quality degradation. Second, the decoder drops the next
frame to compensate the delay caused by the current frame.
Both treatments will not satisfy the users’ expectation when the
delay of frame decoding frequently and severely occurs. In this
validation, mplayer chose the first option to handle the delayed
frame decoding. If the decoder selects a v/f pair that is slower
than the ideal v/f pair, the overall decoding time will increase.

Authorized licensed use limited to: Korea University. Downloaded on September 15, 2009 at 03:08 from IEEE Xplore. Restrictions apply.

BANG et al.: RUN-TIME ADAPTIVE WORKLOAD ESTIMATION FOR DYNAMIC VOLTAGE SCALING 1345

TABLE IV
ESTIMATION PERFORMANCE

Fig. 11. Voltage selection and decoding time comparison of PID, NS-KF, and
oracle method.

Otherwise (faster v/f pair than the ideal v/f pair), the overall
EC will increase.

Fig. 11 shows our method, PID, and oracle method from
the decoding time perspective.2 First, the oracle method stays
at around 1.5 V after 5 s, meaning that it completes the
decoding of all frames and stays in idle state. Our method
completes the decoding a little bit later than the oracle method
(at approximately 5.3 s) and stays in idle state like the oracle

2We dynamically measured not only the voltage supplied to Vdd pin of
PXA270 but also the current flowing into the Vdd pin of PXA270. The voltage
measurement was used for Fig. 11, while the current measurement was used for
Fig. 12.

Fig. 12. EC in practical environment.

method. On the contrary, PID method completes the decoding
at around 7.5 s, which is 2.5 s longer than the oracle method.
In our case, the timing constraint of a single frame decoding is
given as 33 ms; hence, it misses roughly 75 frames out of 150
frames if we chose a frame dropping scheme. Fig. 11 also shows
how each method tracks the workload variation dynamically
by seeing the voltage selection sequence. Obviously, the line
shape of our method and that of oracle method are quite
similar, whereas the line shape of PID is quite different. More
specifically, PID frequently selects the maximum v/f pair right
after selecting the minimum v/f pair (or vice versa), meaning
that its decision is too much sensitive to the workload variation.
On the other hand, our method tracks the workload in a stable
form except for the initial periods. In other words, our method
shows a lower estimation accuracy during the initial period due
to the insufficient information. However, it shows very accurate
and consistent workload estimation after the sufficient training
period which is equivalent to the decoding time of tens of
frames.

Finally, we related the workload estimation accuracy to the
EC, as shown in Fig. 12. Fig. 12 shows the energy consumed
at each v/f pair, as well as the total EC. As shown in Fig. 12,
the oracle method rarely selects two maximum v/f pairs, while
PID method consumes half of the total EC at these two pairs.
Our method is in between these two methods, but its tendency
is closer to the oracle method rather than PID. Even though the
total EC of PID is lower (about 4%) than that of our method,
our method is favored from the QoS perspective, since PID
sacrifices the quality satisfaction for energy saving.

Authorized licensed use limited to: Korea University. Downloaded on September 15, 2009 at 03:08 from IEEE Xplore. Restrictions apply.

