
1274 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

VI. CONCLUSION

This paper investigated the impact of process variation on test
quality of bridging faults. It has been shown that process variation
influences two parameters (logic VT and gate drive strength) which
affects the logic behavior of bridging faults leading to test escape.
To quantify the impact of process variation on test quality, a metric
called test robustness has been presented. The metric guides a novel
PVAA method, which target the logic faults that have the largest
impact on test quality. Experimental results show that for all consid-
ered benchmarks, the proposed method achieves better results (less
test escapes) than tests generated without consideration of process
variation.

REFERENCES

[1] U. Ingelsson, B. M. Al-Hashimi, and P. Harrod, “Variation aware analysis
of bridging fault testing,” in Proc. ATS, Nov. 2008, pp. 206–211.

[2] S. Bhunia, S. Mukhopadhyay, and K. Roy, “Process variations and
process-tolerant design,” in Proc. VLSID, Jan. 2007, pp. 699–704.

[3] V. Iyengar, J. Xiong, S. Venkatesan, V. Zolotov, D. Lackey, P. Habitz,
and C. Visweswariah, “Variation-aware performance verification using
at-speed structural test and statistical timing,” in Proc. ICCAD, Nov. 2007,
pp. 405–412.

[4] V. R. Devanathan, C. P. Ravikumar, and V. Kamakoti, “Variation-tolerant,
power-safe pattern generation,” IEEE Des. Test. Comput., vol. 24, no. 4,
pp. 374–384, Jul. 2007.

[5] X. Lu, Z. Li, W. Qiu, D. M. H. Walker, and W. Shi, “PARADE: Parametric
delay evaluation under process variation,” in Proc. ISQED, Mar. 2004,
pp. 276–280.

[6] X. Lu, Z. Li, W. Qiu, D. M. H. Walker, and W. Shi, “Longest-path selec-
tion for delay test under process variation,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 24, no. 12, pp. 1924–1929, Dec. 2005.

[7] G. Chen, S. Reddy, I. Pomeranz, J. Rajski, P. Engelke, and B. Becker,
“An unified fault model and test generation procedure for interconnect
open and bridges,” in Proc. ETS, May 2005, pp. 22–27.

[8] M. Favalli and M. Dalpasso, “High quality test vectors for bridging faults
in the presences of IC’s parameters variations,” in Proc. DFT, Sep. 2007,
pp. 448–456.

[9] S. R. Nassif, “Modeling and analysis of manufacturing variations,” in
Proc. CICC, May 2001, pp. 223–228.

[10] M. Renovell, P. Huc, and Y. Bertrand, “The concept of resistance interval:
A new parametric model for realistic resistive bridging fault,” in Proc.
VTS, Apr. 1995, pp. 184–189.

[11] P. Engelke, I. Polian, M. Renovell, and B. Becker, “Simulating resistive
bridging and stuck-at faults,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 25, no. 10, pp. 2181–2192, Oct. 2006.

[12] S. Khursheed, U. Ingelsson, P. Rosinger, B. M. Al-Hashimi, and
P. Harrod, “Bridging fault test method with adaptive power management
awareness,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 27, no. 6, pp. 1117–1127, Jun. 2008.

[13] M. Favalli and M. Dalpasso, “Bridging fault modeling and simulation for
deep submicron CMOS ICs,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 21, no. 8, pp. 941–953, Aug. 2002.

[14] K. J. Kuhn, “Reducing variation in advanced logic technologies:
Approaches to process and design for manufacturability of nanoscale
CMOS,” in IEDM Tech. Dig., Dec. 2007, pp. 471–474.

[15] P. Oldiges, Q. Lin, K. Petrillo, M. Sanchez, M. Ieong, and M. Hargrove,
“Modeling line edge roughness effects in sub 100 nanometer gate length
devices,” in Proc. SISPAD, Sep. 2002, pp. 131–134.

[16] A. Asenov, “Random dopant induced threshold voltage lowering and
fluctuations in sub-0.1 µm MOSFETs,” IEEE Trans. Electron Devices,
vol. 45, no. 12, pp. 2505–2513, Dec. 1998.

[17] Predictive Technology Model, Arizona State Univ., Tempe, AZ, Apr. 2008.
[Online]. Available: http://www.eas.asu.edu/~ptm

[18] L. H. A. Leunissen, W. G. Lawrence, and M. Ercken, “Line edge
roughness: Experimental results related to a two-parameter model,”
Microelectron. Eng., vol. 73/74, pp. 265–270, Jun. 2004.

[19] zChaff Boolean Satisfiability Problem Solver, Mar. 2007. [Online]. Avail-
able: http://www.princeton.edu/~chaff/zchaff.html

[20] OSU FreePDK, Oklahoma State Univ., Stillwater, OK, 2008. [Online].
Available: http://avatar.ecen.okstate.edu/projects/scells/OSUFreePDK.php

High-Speed Post-Layout Logic Simulation Using
Quasi-Static Clock Event Evaluation

Myeong-Jin Kim, Eui-Young Chung, Member, IEEE,
and Sungroh Yoon, Member, IEEE

Abstract—The post-layout gate-level simulation constitutes a critical de-
sign step for timing closure. The major drawback of traditional post-layout
gate-level simulation is its long analysis time, which becomes exacerbated
as design complexity increases. An alternative method is static timing
analysis (STA), which can drastically reduce analysis time. However, STA
sacrifices accuracy for speed and often produces unrealistic results such
as false paths and overly pessimistic estimates. In this paper, we propose
a hybrid analysis method that can significantly reduce analysis time, while
preserving accuracy, with respect to the traditional gate-level simulation.
Our key idea is that a large speedup would be possible by removing those
events that are repetitious and unnecessary for simulation. In particular,
we focus on reducing the number of clock-related events, which account
for a major portion of all the events handled by a simulator. We tested the
proposed method extensively with various benchmark circuits as well as
industrial designs. Our experimental results exhibit that the proposed ap-
proach accelerates the total simulation speed by two times on average, yet
maintaining the accuracy acquired by the traditional gate-level simulation.

Index Terms—Clock tree analysis, CMOS integrated circuits, dynamic
power analysis, gate-level logic simulator, static timing analysis (STA).

I. INTRODUCTION

Since the term System-on-Chip (SoC) was first introduced in 1993,
more and more functions have been integrated into a single chip
thanks to rapid advances of process technology [1]. When designing
such complex chips, one of the most time-consuming processes is
often design verification. The aim of design verification is to sign off
a given design in several aspects, particularly for functionality and
timing. The major issue is the appropriate tradeoff between verification
completeness and running time. To address this, several techniques
have been proposed, which are typically classified into four categories:
simulation methods, static methods, formal methods, and physical
methods [2].

Simulation methods have been the most popular way for functional
and timing verification. However, other methods are gradually taking
its role for verification time reduction or completeness. For instance,
formal methods are gradually receiving a large attention in the func-
tional verification community. In addition, static methods have already
become the de facto standard in the design flow of many commercial
application-specific integrated circuit vendors for timing verification.

Manuscript received October 6, 2008; revised January 8, 2009. Current
version published July 17, 2009. This work was supported in part by “System IC
2010” project of Korea Ministry of Knowledge Economy, by IDEC (IC Design
Education Center), by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education,
Science and Technology (2009-0068969), and by KOSEF Grants funded by the
Korean Government (MEST) (2009-007988 and 2009-0060369). This paper
was recommended by Associate Editor C. V. Kashyap.

M.-J. Kim is with the School of Electrical and Electronic Engineering,
Yonsei University, Seoul 120-749, Korea, and also with the System IC Busi-
ness Team, LG Electronics, Seoul 135-985, Korea (e-mail: myeongjinkim@
yonsei.ac.kr).

E.-Y. Chung is with the School of Electrical and Electronic Engineering,
Yonsei University, Seoul 120-749, Korea (e-mail: eychung@yonsei.ac.kr).

S. Yoon is with the School of Electrical Engineering, Korea University, Seoul
136-701, Korea (e-mail: sryoon@korea.ac.kr).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2009.2020716

0278-0070/$25.00 © 2009 IEEE

Authorized licensed use limited to: Korea University. Downloaded on July 21, 2009 at 01:40 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009 1275

However, these methods also have their own limitations. The limitation
of a formal method is that it typically requires resources exponentially
proportional to the design size, meaning that only small designs can
be verified. Moreover, a static method is often too pessimistic by
considering all possible cases which cannot be encountered in reality.
The problem of “false paths” is one of the most well-known limitations
of static methods for timing verification [3]. In addition, crosstalk
effects can be precisely analyzed in a dynamic manner which is the
generic feature of simulation methods. For these reasons, simulation is
still an important verification method for large-scale SoCs.

Typically, the post-layout simulation of digital circuits means the
gate-level simulation with back-annotated timing data in standard de-
lay format (SDF) [4] which is calculated from the parasitic information
extracted from physical layouts. Thus, a post-layout simulation method
just inherits the properties of conventional gate-level simulation meth-
ods. Conventional gate-level simulation techniques can largely be
classified into two categories: interpreted event-driven method and lev-
elized compiled-code method. In addition, hybrid methods have been
studied for many years [5], [6]. It is known that the interpreted method
is more advantageous for simulating low activity circuits. In [7], the
authors claim that the interpreted event-driven method outperforms
the levelized compiled-code method when the circuit activity rate is
lower than 50%–60%. Many commercial logic simulators also adopt
the interpreted event-driven approach for gate-level simulations, since
an interpreted event-driven method is effective for large-scale circuits
particularly when the circuit activity is low [8].

In this paper, we propose a speedup technique for post-layout gate-
level simulation, while keeping the analysis accuracy of estimates
equivalent to that of traditional simulation. The key idea of our method
is to use both event-driven and static methods in a hybrid fashion.
We focus on reducing the number of clock-related events simulated,
since clock signals repeat toggling periodically, and the portion of
clock events out of the total events is not marginal. This observa-
tion motivates us to devise techniques for accelerating clock-event
analysis, which can eventually yield overall simulation performance
improvements. This is true for both pre- and post-layout stages, but
the amount of savings would be higher for the post-layout stage,
since post-layout designs have more buffers in signal lines to meet
timing constraints. The proposed method is extensively tested with
benchmark and industrial circuits, and the result is presented.

The rest of this paper is organized as follows. Section II presents
related work, and in Section III, we explain the details of our method.
We present our experimental results in Section IV, followed by a
conclusion in Section V.

II. RELATED WORK

The idea of speeding up simulation by exploiting clock networks
has not been explored much in the event-driven simulation community.
Only a few studies tried to exploit clock networks for parallel simula-
tion [9]. Their major concern was how to reduce the synchronization
overhead. That is, their major focus was not on reducing the evaluation
time for clock events but on reducing communication overheads
among processes. The work most closely related to the proposed
technique is the cycle-based simulation method in which every event
is evaluated at cycle-accurate level. Although this approach showed
impressive speedups, it failed to survive in the commercial market,
since it could not efficiently incorporate realistic delay models other
than the simplistic zero-delay and unit-delay models. On the contrary,
static timing analysis (STA) has been popularly used in the timing
estimation of clock networks, particularly for timing-driven layouts.
Its popularity is mainly due to its simplicity, short running time, and
reasonable accuracy. The use of STA has further been expanded to

Fig. 1. Comparison of traditional and proposed flows.

consider process, voltage, temperature, and crosstalk variations as
process technology scales down. To cope with such variations, STA
has been in evolution to handle the variation effects in a statistical
manner. The history of event-driven simulation and STA indicates
that STA is appropriate for timing analysis of predictable (periodic)
signals such as clocks in terms of speed, while unpredictable signal
can effectively be managed by the event-driven simulation in terms
of accuracy. No other techniques have exploited the merits of both
techniques, to the best of the authors’ knowledge. The method we
propose is to exploit the merits of both event-driven method and STA
in such a way that the analysis speed is in between the conventional
event-driven simulation and STA, while its accuracy is identical to that
of the event-driven simulation.

III. PROPOSED METHOD

Fig. 1 compares the proposed method with the traditional post-
layout simulation flow. Our key idea is that by combining the event-
driven and static analysis methods, we can achieve a drastic speedup
with no impact on accuracy. In particular, we focus on reducing the
number of events occurring in clock trees. In a typical event-based
simulation, most events are related to clocks since they keep toggling
and generating events. It is thus expected that efficient handling of
clock-related events would reduce the simulation time substantially.

A. Overview

The proposed method first partitions the input design into two
parts, namely, clock network and nonclock network parts. The non-
clock network part is then simulated by the conventional event-driven
method. In contrast, the clock network part is first analyzed by STA to
precalculate clock delays from a clock source to its downstream flip-
flops. After the layout process is completed, annotations on cell and
interconnect delays are available for each clock tree in the design. By
STA, we can thus calculate the clock delay of each flip-flop in a clock
tree by propagating rising and falling events from the clock source of
the tree to the flip-flop [10]. As demonstrated in Section IV, overheads
for the static analysis of clock trees are typically negligible.

During the simulation, we need not generate those events that occur
at intermediate gates between the clock source and peripheral flip-
flops. We refer to this notion as clock event shadowing (Fig. 2).
Consequently, the proposed method can run faster than conventional
simulators that should simulate events at intermediate gates repeatedly
in every cycle. Another key idea is to eliminate unnecessary clock
events at the clock pin of each flip-flop by using the fact that a flip-
flop is only sensitive to either the positive or negative edge of a given
clock. If a flip-flop changes its output at the positive edge of a given
clock, we call the positive edge active and the negative edge inactive,

Authorized licensed use limited to: Korea University. Downloaded on July 21, 2009 at 01:40 from IEEE Xplore. Restrictions apply.

1276 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

Fig. 2. Concept of the clock event shadowing.

Fig. 3. Reducing the number of clock-related events. (a) Clock tree in layout.
(b) Clock tree analysis by STA. (c) Number of events in clock network without
event shadowing and inactive edge filtering. (d) Number of events in clock
network with event shadowing and inactive edge filtering.

respectively. Hence, we can reduce the number of clock events at the
pin of each flip-flop by half by eliminating inactive edge events. We
call this technique inactive-edge filtering.

Example 1: Fig. 3(a) shows a clock network in the layout of a
design. Using the RC information extracted from the layout, we
perform STA on this clock network and compute the clock delays of
the flip-flops in the clock network, as shown in Fig. 3(b). Fig. 3(c) and
(d) compares the numbers of events without and with the proposed
method employed, respectively. The events occurring between 0.1 and
0.5 ns are eliminated by clock-event shadowing, and the number of
events from 0.5 ns to the end is reduced by inactive-edge filtering. �

B. Proposed Simulator

A traditional event-driven simulator uses a conceptual wheel called
the event wheel, which rotates and supply events periodically to the
simulator [Fig. 4(a)]. In the proposed method, we consider clock-
related events separately from the rest of events. Thus, we create
another wheel called the clock scheduling wheel, as shown in Fig. 4(b).
The proposed simulator works based on the interplay between these
two wheels. As simulation time proceeds, the two wheels rotate and
generate events at the time points specified by either wheel.

1) Clock Scheduling Wheel: This wheel is to trigger clock-related
events and contains all possible clock event triggering scenarios. This
can eliminate repetitive clock event propagation during simulation.
If the design has a clock of period P , so is the circumference of
the clock-event scheduling wheel. The use of clock scheduling wheel

Fig. 4. Comparison. (a) Conventional event wheel. (b) Clock scheduling
wheel and event wheel.

Fig. 5. Example: clock event scheduling.

helps reduce the number of events scheduled for simulation. At active
edges, the simulator schedules events related to the clock pins in flip-
flops and updates the status of the other pins. At inactive edges, the
simulator only updates a status table in the simulation database by
considering pin phase delays and clock source triggering time without
queuing additional events. That is, the events occurring only at active
edges are scheduled for simulation.

When a simulation starts, the proposed simulator generates events
for flip-flops directly using the clock-event scheduling wheel without
going through intermediate gates, resulting in a steep decrease in
simulation time. According to input stimuli, the events occurring at
combinational gates are propagated with delay effects considered.
Whereas, the event occurring at a storage element is propagated only
when its clock or enable input is activated. Otherwise, the simulator
updates only the status of input signals without propagating events.

Example 2: In Fig. 5, assume a clock signal whose period and
duty cycle are 4 ns and 50%, respectively. Suppose that all flip-flops
connected to the clock tree are positive-edge sensitive. Then, the clock
events at the clock source will be scheduled on the clock scheduling
wheel. Each event at the clock source is linked to the delayed events
occurring at the downstream flip-flop clock pins. These delayed events
are listed in the clock tree delay table, which is constructed by per-
forming STA of the clock tree. Hence, whenever a clock source event

Authorized licensed use limited to: Korea University. Downloaded on July 21, 2009 at 01:40 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009 1277

Fig. 6. Multi-clock scheduling wheel and event wheel.

recorded on the clock scheduling wheel is evaluated, the events linked
to this clock source event are scheduled and recorded on the event
wheel with the specified delays, as long as their polarity corresponds
to the active edge. The shaded part of the table indicates the events
removed by clock event shadowing. �

2) Event Wheel: The event wheel is to generate and manage non-
clock events. The circumference of the event scheduling wheel is
twice1 as long as the longest clock period and is divided into subin-
tervals.2 Each time point is specified in the event scheduling wheel
(this time point serves as a coarse-grained timing guideline), and
a table called pin instance status table is referred to for retrieving
more fine-grained timing information for the rising and falling events
associated with pin instances. These events are inserted into the queue
for simulation, and the corresponding entry in the pin instance status
table is updated with most recent status information.

3) Estimating the Amount of Savings: Let R denote the ratio of
the total events simulated by the proposed method to that by the
conventional one. We can compute an estimate of R as follows:

R =

∑
event − 4

∑
clock buffer − ∑

flipflop
∑

event
(1)

where (
∑

event), (
∑

clock buffer), and (
∑

flipflop) represent the
number of total events in the traditional simulator, the number of clock
buffers in the clock tree, and the number of flip-flops in the clock tree,
respectively. In the numerator, we subtract (4

∑
clock buffer) from

(
∑

event) because four events happen (two at the input and two at the
output) for each gate per period (two events at rising edges and two at
falling edges). This term originates from the clock event shadowing.
The last term in the numerator is due to the inactive-edge filtering, and
we can reduce the number of events by the number of flip-flops in the
design.

C. Extensions

We can apply the proposed technique to multi-clock designs by
adding additional tracks to the clock-event scheduling wheel, one track

1Here, we assume that the phase delay of a clock network can be at most
twice the longest clock period. This is a conservative estimate and can further
be optimized for additional speedups.

2The length of an interval is specified in the SDF file used.

TABLE I
ISCAS 99 BENCHMARK CIRCUITS

TABLE II
COMPARING THE NUMBER OF SIMULATED EVENTS

Fig. 7. Runtime comparison.

TABLE III
INFORMATION ON THE MULTICLOCK DESIGN TESTED

per clock in the design, and adjusting the parameters of the wheel
accordingly.

Example 3: Assume a design has two clocks with periods of 3 and
4 ns. The least common multiple of the periods is 12 ns, and a clock
scheduling wheel having the circumference of 12 ns is created, as
shown in Fig. 6. The time interval corresponding to the circumference
is further divided into equal-sized subintervals. Each interval has a
length of 0.5 ns, which corresponds to the greatest common divisor of
all falling and rising edge periods of the two clocks used (0 and 1.5 ns
for the 2-ns clock; 0 and 2 ns for the 3-ns clock). For simulation, the
event wheel is formed and then interacts with the clock scheduling
wheel. The circumference of the event wheel is 8 ns (twice as large as
the longer clock period). �

The proposed method can also handle clock-gated circuits (for low-
power design) by shadowing events in the clock tree rooted at the
output pin of each clock gating cell. It is thus possible to apply our

Authorized licensed use limited to: Korea University. Downloaded on July 21, 2009 at 01:40 from IEEE Xplore. Restrictions apply.

1278 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 8, AUGUST 2009

TABLE IV
PERFORMANCE COMPARISON FOR MULTICLOCK DESIGN

approach to vectored dynamic power analysis for enhancing the analy-
sis speed. According to our experiments, we could obtain about two
times speedup over the traditional simulation. Due to space limit, more
details are not presented.

IV. EXPERIMENTAL RESULTS

We tested the proposed simulator with the ISCAS 99 benchmarks
implemented using 0.25-μm process technology. The designs used and
their characteristics are listed in Table I. The designs were synthesized,
placed, routed, and optimized by Synopsys Design-Compiler and
Astro. The target design speed was achieved by conducting postrouting
optimization. We used Synopsys Star-RCXT [11] to generate standard
parasitic format (SPF) files and exploited Synopsys PrimeTime [12]
for calculating the SDF delay information from the SPF files.

The proposed simulator, simulation models, and data structures
were written in the Scheme program language [13], and all the infor-
mation for experiments were maintained in the Synopsys Milkyway
environment [14]. For comparison, we also implemented in Scheme
the traditional simulation environment that lacks the clock event shad-
owing and inactive-edge filtering capabilities proposed in this paper.

To verify the correctness of the proposed method, we first ran
it over the test circuits to generate a set of value change dump
(VCD) files [15]. Using a traditional gate-level simulator, we then
produced another set of VCD files. The VCD files generated by the
two simulators matched, which confirmed the accuracy of the proposed
simulator. This is as expected, since our method does not approximate
any events, although clock tree events are handled in a static manner.

We then compared the performance of the traditional post-layout
simulation method and that of the proposed technique in terms of
the number of total events simulated and running time. We let each
simulator run for 1000 cycles with identical input stimuli. Table II
compares the number of total events simulated by the two methods.
The third column of this table represents the ratio of the number of
events simulated by the traditional method to that by the proposed
method. This ratio was 44.1%–65.9%, indicating a steep reduction
in the event counts. Fig. 7 shows the runtime comparison result, in
which the runtime of the proposed method was on average 57.4% of
the traditional technique.

For testing with multi-clock designs, we compared the performance
of the two simulators using a bus arbitration logic circuitry designed
for a commercial HDTV chip designed using 0.13-μm process tech-
nology. As listed in Table III, the design used has approximately
100 000 gates and seven clocks. The design has 33 787 pins and
8729 nets. We ran each simulator for the simulation time of 1040 ns,
achieving the result summarized in Table IV. The running time and
the number of simulated events of the proposed technique were only
49.3% and 52.1% of the traditional method, respectively. Table IV
also compares two simulators for the number of events simulated for
each clock event type. We could confirm that the performance of the
proposed simulator is largely improved by completely eliminating the
evaluation of inactive clock edge events thanks to the inactive clock

edge filtering. The impact of clock event shadowing technique was
less than expected, as the number of active edges simulated shows
in Table IV. The effectiveness of clock event shadowing primarily
depends on the depth of clock tree, which was only at most five in this
design. Using a design with a longer clock buffer chain would result in
more reduction.

V. CONCLUSION AND FUTURE WORK

We have proposed a fast simulation method for post-layout gate-
level simulation, where clock events take the dominant portion out
of all the events to be simulated. The major techniques we used
for running time reduction are clock event shadowing and inactive-
edge filtering. The experimental results we obtained exhibit that the
proposed method runs over two times faster than the traditional method
on average. Future work includes extensions to various design compo-
nents with regular or predictable event activities. If we also exploit
approximations, we would be able to increase the portion of design
analyzed in a static manner, which will result in more speedups while
reasonably sacrificing accuracy.

REFERENCES

[1] K. Mori, H. Yamada, and S. Takizawa, “System on chip age,” in Proc.
Tech. Papers Int. Symp. VLSI Technol., Syst., Appl., 1993, pp. K15–K20.

[2] P. Rashinkar, P. Paterson, and L. Singh, System-on-a-Chip Verification
Methodology and Techniques. Norwell, MA: Kluwer, 2001.

[3] C. Rim, S. Kim, J. Park, M. Jang, J. Lee, K. Choi, and J. Kong, “Fast and
practical false-path elimination method for large SoC designs,” in SOC
Conf., 2003, pp. 397–400.

[4] IEEE Standard for Standard Delay Format (SDF) for the Electronic
Design Process, IEEE Std. 1497-2001, 2001.

[5] Y. Lee and P. Maurer, “Two new techniques for compiled multi-delay
simulation,” in Southeastcon, 1992, pp. 175–179.

[6] K. Taniguchi, H. Fujii, S. Kajihara, and X. Wen, “Hybrid fault simulation
with compiled and event-driven methods,” in Design Test Integr. Syst.
Nanoscale Technol., 2006, pp. 240–243.

[7] P. Maurer, “The inversion algorithm for digital simulation,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 16, no. 7, pp. 762–769,
Jul. 1997.

[8] M. L. Bushnell and V. D. Agrawal, Essentials of Electronic Testing:
Digital, Analog, and Mixed-Signal VLSI Circuits. Boston, MA: Kluwer,
2000.

[9] K. Chang, W. Tu, H. Wang, Y. Yeh, and S. Kuo, “Techniques to re-
duce synchronization in distributed parallel logic simulation,” in Parallel
Distrib. Comput. Syst., 2004, pp. 1–5.

[10] V. Wason, R. Murgai, and W. Walker, “An efficient uncertainty- and
skew-aware methodology for clock tree synthesis and analysis,” in VLSI
Design, 2007, pp. 271–277.

[11] Star-RCXT. [Online]. Available: http://www.synopsys.com/Tools/
Implementation/SignOff/Pages/Star-RCXT.aspx

[12] PrimeTime. [Online]. Available: http://www.synopsys.com/Tools/
Implementation/SignOff/Pages/PrimeTime.aspx

[13] IEEE Standard for the Scheme Programming Language, IEEE Std. 1178-
1990, 1990.

[14] Milkyway. [Online]. Available: http://www.synopsys.com/solutions/
endsolutions/galaxyimplementation/pages/milkyway.aspx

[15] IEEE Standard Verilog Hardware Description Language, IEEE Std. 1364-
2001, 2001.

Authorized licensed use limited to: Korea University. Downloaded on July 21, 2009 at 01:40 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

